1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natima [27]
3 years ago
15

If a charge of 12 C flows past any point along a circuit in _____ seconds, the current at that point would be 3 A.

Physics
1 answer:
Snowcat [4.5K]3 years ago
7 0
The answer to this is 4 seconds
You might be interested in
A parsec is a measurement of: magnitude distance position speed
guajiro [1.7K]
A parsec is a measurement of distance.
6 0
3 years ago
Read 2 more answers
A cylindrical resistor element on a circuit board dissipates 1.2 W of power. The resistor is 2 cm long, and has a diameter of 0.
34kurt

Answer:

(a) The resistor disspates 103680 joules during a 24-hour period.

(b) The heat flux of the resistor is approximately 4340.589 watts per square meter.

(c) The fraction of heat dissipated from the top and bottom surfaces is 0.045.

Explanation:

(a) The amount of heat dissipated (Q), measured in joules, by the cylindrical resistor is the power multiplied by operation time (\Delta t), measured in hours. That is:

Q = \dot Q \cdot \Delta t (1)

If we know that \dot Q = 1.2\,W and \Delta t = 86400\,s, then the amount of heat dissipated by the resistor is:

Q = (1.2\,W)\cdot (86400\,s)

Q = 103680\,J

The resistor disspates 103680 joules during a 24-hour period.

(b) The heat flux (Q'), measured in watts per square meter, is the heat transfer rate divided by the area of the cylinder (A), measured in square meters:

Q' = \frac{\dot Q}{A} (2)

Q' = \frac{\dot Q}{\frac{\pi}{2}\cdot D^{2}+\pi\cdot D \cdot h } (3)

Where:

D - Diameter, measured in meters.

h - Length, measured in meters.

If we know that \dot Q = 1.2\,W, D = 4\times 10^{-3}\,m and h = 2\times 10^{-2}\,m, the heat flux of the resistor is:

Q' = \frac{1.2\,W}{\frac{\pi}{2}\cdot (4\times 10^{-3}\,m)^{2}+\pi\cdot (4\times 10^{-3}\,m)\cdot (2\times 10^{-2}\,m) }

Q' \approx 4340.589\,\frac{W}{m^{2}}

The heat flux of the resistor is approximately 4340.589 watts per square meter.

(c) Since heat is uniformly transfered, then the fraction of heat dissipated from the top and bottom surfaces (r), no unit, is the ratio of the top and bottom surfaces to total surface:

r = \frac{\frac{\pi}{2}\cdot D^{2}}{A} (3)

If we know that A \approx 2.765\times 10^{-4}\,m^{2} and D = 4\times 10^{-3}\,m, then the fraction is:

r = \frac{\frac{\pi}{2}\cdot (4\times 10^{-3}\,m)^{2} }{2.765\times 10^{-4}\,m^{2}}

r = 0.045

The fraction of heat dissipated from the top and bottom surfaces is 0.045.

7 0
3 years ago
Why mole is called fundamental unit.​
gladu [14]

Explanation:

because it doesn't depend upon other unit like kg meter and second

4 0
3 years ago
A ball starts at rest and rolls down an inclined plane. The ball reaches 7.5 m/s in 3 seconds. What is the acceleration?
just olya [345]

Answer:

a=2.5\ m/s^2

Explanation:

<u>Motion With Constant Acceleration </u>

It's a type of motion in which the velocity of an object changes uniformly over time.

The equation that describes the change of velocities is:

v_f=v_o+at

Where:

a   = acceleration

vo = initial speed

vf  = final speed

t    = time

Solving the equation for a:

\displaystyle a=\frac{v_f-v_o}{t}

The ball starts at rest (vo=0) and rolls down an inclined plane that makes it reach a speed of vf=7.5 m/s in t=3 seconds.

The acceleration is:

\displaystyle a=\frac{7.5-0}{3}

\boxed{a=2.5\ m/s^2}

7 0
3 years ago
A car is strapped to a rocket (combined mass = 661 kg), and its kinetic energy is 66,120 J.
aliina [53]

Answer:

9.43 m/s

Explanation:

First of all, we calculate the final kinetic energy of the car.

According to the work-energy theorem, the work done on the car is equal to its change in kinetic energy:

W=K_f - K_i

where

W = -36.733 J is the work done on the car (negative because the car is slowing down, so the work is done in the direction opposite to the motion of the car)

K_f is the final kinetic energy

K_i = 66,120 J is the initial kinetic energy

Solving,

K_f = K_i + W = 66,120 + (-36,733)=29,387 J

Now we can find the final speed of the car by using the formula for kinetic energy

K_f = \frac{1}{2}mv^2

where

m = 661 kg is the mass of the car

v is its final speed

Solving for v, we find

v=\sqrt{\frac{2K_f}{m}}=\sqrt{\frac{2(29,387)}{661}}=9.43 m/s

3 0
3 years ago
Other questions:
  • What are three basic conditions for a hurricane to form
    11·1 answer
  • What is a prokaryote cell/ eukaryote cell?
    5·1 answer
  • The velocity of the block at the bottom of the incline at point B
    8·1 answer
  • A 0.0250 kg sock spins in a dryer of radius 0.225 m once every 0.304s. how much centripetal force acts on the sock?(unit=N)
    5·1 answer
  • A group of lions is chasing a zebra. The lions are most likely responding to which kind of stimulus
    9·1 answer
  • A 50 kg box hangs from a rope. What is the tension in the rope if: The box is at rest? The box moves up at a steady 5.0 m/s? The
    11·1 answer
  • The protons in a nucleus are approximately 2 ✕ 10^−15 m apart. Consider the case where the protons are a distance d = 1.93 ✕ 10^
    10·2 answers
  • Prove that g is inversely proportional to the radius​
    12·1 answer
  • Fill in the blank: In the Northern Hemisphere, June 21 has ______________ than December 21.
    11·1 answer
  • if you run off the pavement, you should: turn the steering wheel quickly toward the road steer straight and slow down before att
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!