We are given –
- Mass of boiling ball is, m = 4 kg
- Speed is, v = 3 m/s
- Momentum, P =?
As we know –
↠Momentum = Mass × Speed(Velocity)
↠Momentum = 4 × 3 kgm/s
↠Momentum = 12 kgm/s
- Henceforth,Momentum will be 12 kgm/s.
Answer:
'A' is the the point on the graph that shows a temperature of 40°C and the time of 25 minutes
Answer:

Explanation:
Given:
- file size to be transmitted,

- transmission rate of data,

- propagation speed,

- distance of data transfer,

<u>Now the delay in data transfer from source to destination for each 10 Mb:</u>



<u>Now this time is taken for each 10 Mb of data transfer and we have 30 Mb to transfer:</u>
So,



Answer:
k = 
b = 
t = 
Solution:
As per the question:
Mass of the block, m = 1000 kg
Height, h = 10 m
Equilibrium position, x = 0.2 m
Now,
The velocity when the mass falls from a height of 10 m is given by the third eqn of motion:

where
u = initial velocity = 0
g = 10
Thus

Force on the mass is given by:
F = mg = 
Also, we know that the spring force is given by:
F = - kx
Thus

Now, to find the damping constant b, we know that:
F = - bv

Now,
Time required for the platform to get settled to 1 mm or 0.001 m is given by:

Answer:
1/4 λ film
Explanation:
Let L = total path length then L = 2 t where t is film thickness
There will be a 180 deg phase change at the air-film interface but no
phase change at the film-air interface
L = n * wavelength / 2 where n = 1, 3, 5, 7 etc
(the total path L must be an odd number of 1/2 wavelengths)
Or t = n * wavelength / 4 (the film must be an odd number
of 1/4 wavelengths thick)
1/4 λ film satisfies this condition
Note: Find the missing diagram in the attachment section.