The mass of NaCl needed for the reaction is 91.61 g
We'll begin by calculating the number of mole of F₂ that reacted.
- Gas constant (R) = 0.0821 atm.L/Kmol
PV = nRT
1.5 × 12 = n × 0.0821 × 280
18 = n × 22.988
Divide both side by 22.988
n = 18 / 22.988
n = 0.783 mole
Next, we shall determine the mole of NaCl needed for the reaction.
F₂ + 2NaCl —> Cl₂ + 2NaF
From the balanced equation above,
1 mole of F₂ reacted with 2 moles of NaCl.
Therefore,
0.783 mole F₂ will react with = 0.783 × 2 = 1.566 moles of NaCl.
Finally, we shall determine the mass of 1.566 moles of NaCl.
- Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mass = mole × molar mass
Mass of NaCl = 1.566 × 58.5
Mass of NaCl = 91.61 g
Therefore, the mass of NaCl needed for the reaction is 91.61 g
Learn more about stiochoimetry: brainly.com/question/25830314
Orbitals am only hold two electrons each, so 3 orbitals can hold 6 electrons
The units used to measure specific heat capacity is Joules per kilogram per Kelvin.
<h3>
What is specific heat capacity?</h3>
It is the amount of heat absorbed per kilogram of material when the temperature rises by 1 Kelvin.
Specific heat capacity C is the Joules of energy in form of heat per kilogram per Kelvin temperature. The units represented by
C = ___ J/kg.K
Thus, the units used to measure specific heat capacity is Joules per kilogram per Kelvin.
Learn more about specific heat capacity.
brainly.com/question/1747943
#SPJ4
There is no reaction because of the common ion effect(which in this case is K)if there were a reaction the products would be the same as the reactants so no reaction happens
B
A qualitative observation describes the characteristics of a substance without quantifying them.