Answer:
272.31× 10²³ atom of strontium
Explanation:
Given data:
Number of moles of strontium = 45.22 mol
Number of atoms = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance. The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ atoms
45.22 mol × 6.022 × 10²³ atom / 1 mol
272.31× 10²³ atom
Explanation:
Given :
Amount of solute - sucrose (C12H22O11) = 41 g
Amount of solvent -soda = 355-mL
Molarity of the solution with respect to sucrose= ?
Molarity(M) is a unit of concentration measuring the number of moles of a solute per liter of solution. The SI unit of molarity is mol/L.
Formula to find the molarity of solution :
Molarity =
Amount of solvent is given in mL, let’s convert to L :
1 L = 1000 mL
Therefore, 355 mL in L will be :
= 0.355 L
We have the amount of solute in g, let’s calculate the number of moles first :
Number of moles (n) =
Molar mass of C12H22O11 = 342.29 g/mol.
Therefore, n =
= 0.119 moles.
33.11 trillion kilometers is equivalent to 3.5 light years
hope this helps :)<span />
Answer:
a) distance is 4+7+1+8=20 blocks
b) displacement is 10 blocks
Explanation:
find displacement: x and y
x axis displacement = 4-1 = 3 blocks
y axis displacement = -7+8= 1 block
displacement = the square root of 3^2 + 1^2
= 9+1 = 10 blocks.
You can find the angle of displacement with respect to the initial position using trig identities, if you wish.
Answer:

Explanation:
In this question, we wish to find the missing nuclei for the equation:

In order to find the missing species, we need to use the charge and mass balance law. That is, the mass should be conserved: the total mass on the left-hand side with respect to the arrow should be equal to the total mass on the right-hand side with respect to the arrow:

Notice from here that:

So far we know that the mass of X is 4. Similarly, we apply the law of charge conservation. The total charge should be conserved:

From here:

We have a particle:

Looking at the periodic table, an atom with Z = 2 corresponds to helium. This can also be written as an alpha particle:
