Answer:
chemonoia
Explanation:
Many people have a strong fear of “chemicals” that belies the evidence. It's called chemonoia – and it may be damaging their health. If you were paranoid, you might think there really was something in the water that's damaged our sense of reason.
C.
Explanation:
As a pendulum swings from its highest to its lowest position along an arc, what happens to its kinetic energy and potential energy? The potential energy decreases while the kinetic energy increases.
2Ca + O2 = 2CaO
First, determine which is the excess reactant
72.5 g Ca (1 mol) =1.8089725036
(40.078 g)
65 g O2 (1 mol) =2.0313769611
(15.999g × 2)
Since the ratio of to O2 is 2:1 in the balanced reaction, divide Ca's molar mass by 2 to get 0.9044862518. this isn't necessary because Ca is already obviously the limiting reactant. therefore, O2 is the excess reactant.
Now do the stoichiometry
72.5 g Ca (1 mol Ca) (1 mol O2)
(40.078 g Ca)(2 mol Ca)(31.998g O2)
=0.0282669621 g of O2 left over
Answer:
A. Reference blank
B. Cuvettes
C. Transmittance
D. Absorbance
E. Wavelength
Explanation:
A reference blank is a sample prepared using the solvent and any other chemicals in the sample solutions, but not the absorbing substance.
A square-shaped container, typically made of quartz, designed to hold samples in a spectrophotometer is known as Cuvettes.
A measurement of the amount of light that passes through a sample or percentage of light transmitted by the sample, with the respective intensities of the incident and transmitted beams is called Transmittance.
The measurement of the amount of light taken in by a sample is known as Absorbance
The wavelength is also the distance travelled by the wave during a period of oscillation. In spectrophotometry, the unit is inversely proportional to energy and commonly measured in nanometers
The number of grams in 1.70 moles of Ca(NO₃)₂ is 384.2 grams
<h3>How to determine the mass of Ca(NO₃)₂</h3>
The mole of a substance is related to it's mass and molar mass according to the following equation:
Mole = mass / molar mass
With the above formula, we can determine the mass of Ca(NO₃)₂ as illustrated below:
- Mole of Ca(NO₃)₂ = 1.70 moles
- Molar mass of Ca(NO₃)₂ = 40 + 3[14 + (16 × 3)] = 40 + 3[14 + 48] = 40 + 3(62) = 40 + 186 = 226 g/mol
- Mass of Ca(NO₃)₂ = ?
Mole = mass / molar mass
1.70 = Mass of Ca(NO₃)₂ / 226
Cross multiply
Mass of Ca(NO₃)₂ = 1.70 × 226
Mass of Ca(NO₃)₂ = 384.2 grams
Thus, the mass of 1.70 moles of Ca(NO₃)₂ is 384.2 grams
Learn more about mole:
brainly.com/question/13314627
#SPJ1