Answer:
can you pop out all the boxes I need to see what the numbers are to get a further understanding
Answer:
Rectangle ABCDABCDA, B, C, D is graphed in the coordinate plane. vertices of the rectangle: A(-1, -6),A(−1,−6),A, left parenthesis, minus, 1, comma, minus, 24+2 ps y+4 sr y+5 qR 2x + 3 pq 2y+2.
Step-by-step explanation:
Answer:
Step-by-step explanation:
Mixture problems are really easy because the table never varies from one problem to another and they don't have a lot of variations in them like motion problems do. The table for us will look like this, using T for Terraza coffee and K for Kona:
#lbs x $/lb = Total
T
K
Mix
Now we just have to fill this table in using the info given. We are told that T coffee is $9 per pound, and that K coffee is $13.50 per pound, so we will fill that in first:
#lbs x $/lb = Total
T 9
K 13.50
Mix
Next we are told that the mix is to be 50 pounds that will sell for $9.54 per pound
#lbs x $/lb = Total
T 9
K 13.50
Mix 50 9.54
Now the last thing we have to have to fill in this table is what goes in the first column in rows 1 and 2. If we need a mix of 50 pounds of both coffees and we don't know how many pounds of each to use, then under T we have x and under K we have 50 - x. Notice along the top we have that the method to use to solve this problem is to multiply the #lbs by the cost per pound, and that is equal to the Total. So we'll do that too:
#lbs x $/lb = Total
T x x 9 = 9x
K 50 - x x 13.50 = 675 - 13.50x
Mix 50 x 9.54 = 477
The last column is the one we focus on. We add the total of T to the total of K and set it equal to the total Mix:
9x + 675 - 13.5x = 477 and
-4.5x = -198 so
x = 44 pounds. This means that the distributor needs to mix 44 pounds of T coffee with 6 pounds of K coffee to get the mix he wants and to sell that mix for $9.54 per pound.
It would be: -25x - 5
Take -5 as a common here,
-5 ( 5x + 1)
In short, Your Answer would be Option B
Hope this helps!