Answer:
= ( ρ_fluid g A) y
Explanation:
This exercise can be solved in two parts, the first finding the equilibrium force and the second finding the oscillating force
for the first part, let's write Newton's equilibrium equation
B₀ - W = 0
B₀ = W
ρ_fluid g V_fluid = W
the volume of the fluid is the area of the cube times the height it is submerged
V_fluid = A y
For the second part, the body introduces a quantity and below this equilibrium point, the equation is
B - W = m a
ρ_fluid g A (y₀ + y) - W = m a
ρ_fluid g A y + (ρ_fluid g A y₀ -W) = m a
ρ_fluid g A y + (B₀-W) = ma
the part in parentheses is zero since it is the force when it is in equilibrium
ρ_fluid g A y = m a
this equation the net force is
= ( ρ_fluid g A) y
we can see that this force varies linearly the distance and measured from the equilibrium position
The universal law of gravitation states that:
Every object in the universe attracts every other object with a force which is proportional to the product of their masses and inversely proportional to the square of distance between them.
It means that if the gravitational force is F, then if the distance is decreased by 5 times, then the new gravitation force is:
F/5² = F/25
I’m pretty sure u have it right
Answer:
false
Explanation:
just did the question on apex, true was wrong
<span>Is the following sentence true or false? Newton's first law does object's mass concentration and its axis of rotation increases, its rotational inertia The bicycle wheels at rest have no angular momentum, and the bicycle will fall over easily.</span><span>
</span>