Answer:
139.6m/s
Explanation:
Calculate the tension first, T=m*g
mass(m): 1750kg, gravity(g): 9.8m/s^2
T= 1750*9.8
=17150N
Then calculate the wave speed using the equation v = √ (T/μ)
v= √(17150N)/(0.88kg/m)
=139.6m/s
Answer:
λ = 28,14 m
Explanation:
To find the wavelength of the wave you use the following formula:
(1)
v: speed of the wave = 1,97 m/s
λ: wavelength
f: frequency of the wave = 0,07 Hz
You replace the values of v and f in the equation (1) and solve for λ:
hence, the wavelength of the wave is 28,14 m
Answer:
In an elastic collision, the momentum is conserved and the mechanical energy is conserved too.
Explanation:
There are two types of collisions:
- Elastic collision: in an elastic collision, the total momentum before and after the collision is conserved; also, the total mechanical energy before and after the collision is conserved.
- Inelastic collision: in an inelastic collision, the total momentum before and after the colllision is conserved, while the total mechanical energy is not conserved (in fact, part of the energy is converted into other forms of energy such that thermal energy, due to the presence of frictional forces)
The solution for this problem is through this formula:Ø = w1 t + 1/2 ã t^2
where:Ø - angular displacement w1 - initial angular velocity t - time ã - angular acceleration
128 = w1 x 4 + ½ x 4.5 x 5^2 128 = 4w1 + 56.254w1 = -128 + 56.25 4w1 = 71.75w1 = 71.75/4
w1 = 17.94 or 18 rad s^-1
w1 = wo + ãt
w1 - final angular velocity
wo - initial angular velocity
18 = 0 + 4.5t t = 4 s
H2O2 H2O
H2 + O2 → H2O. Word equation: Hydrogen gas + Oxygen gas → water. Type of Chemical Reaction: For this reaction we have a Combination reaction. Balancing Strategies: For this reaction it is helpful to start by changing the coefficient in front of H2O and so that you have an even number of oxygen atoms.