The magnitude of the electrical force between a pair of charged particles is 4 Times as much when the particles are moved half as far apart.
This can be easily understood by Columb's law,

which state's that the amount of electrical force experienced by two charged particles is inversely proportional to the square of the distance between them.
∴ 
Now, we know the new distance is half the original distance,


The electrical force of attraction or electrostatic force of attraction between two charged particles refers to the amount of attractive or repulsive force that exists between the two charges. This can be calculated by Columb's Law.
A charged particle in physics is a particle that has an electric charge. It might be an ion, such as a molecule or atom having an excess or shortage of electrons in comparison to protons. The same charge is thought to be shared by an electron, a proton, or another primary particle.
Learn more about electrical force here
brainly.com/question/2526815
#SPJ4
Answer:
Explanation:
4√((40(4046)) = 1,609.17370... = 1609 m
Answer:
There is a localization of negative charge near the door handle.
Answer:
Explanation:
The distance travelled in the free fall is H - h
Since the apple originally started from rest we can use v^2 = u^2 + 2 x g x s where v is the final velocity, g the accln due to gravity and s the distance travelled and u is the initial velocity = 0
So the velocity just before it enters the grass is sq rt [2 x g x (H - h)]
Once in the grass, it slows down at a constant rate which means that the acceleration (a) during this period is constant.
So once again using the same formula we have v = O and u = sq rt[2 x g x (H-h)]
so since v^2 = u^2 + 2 x a x s then
O^2 = 2 x g x (H-h) + 2 x a x h
{O^2 - 2 x g x (H - h)}/(2 x h) = a
The answer would be Kelvin which is written as K
In short, Your Answer would be Option D
Hope this helps!