Answer:
16.9000000000000001 J
Explanation:
From the given information:
Let the initial kinetic energy from point A be
= 1.9000000000000001 J
and the final kinetic energy from point B be
= ???
The charge particle Q = 6 mC = 6 × 10⁻³ C
The change in the electric potential from point B to A;
i.e. V_B - V_A = -2.5 × 10³ V
According to the work-energy theorem:
-Q × ΔV = ΔK





Answer:
The maximum change in flux is 
The average induced emf 
Explanation:
From the question we are told that
The speed of the technician is 
The distance from the scanner is 
The initial magnetic field is 
The final magnetic field is 
The diameter of the loop is 
The area of the loop is mathematically represented as
![A = \pi [\frac{D}{2} ]^2](https://tex.z-dn.net/?f=A%20%20%3D%20%20%5Cpi%20%5B%5Cfrac%7BD%7D%7B2%7D%20%5D%5E2)


At maximum the change in magnetic field is mathematically represented as

=> 

The average induced emf is mathematically represented as



Color property of light would provide evidence for the idea that light is a wave
<h3><u>
Explanation:</u></h3>
The reality is that light manifests practices that are representative of both waves and particles. Young proposed that light of varying colors was formed of waves possessing various lengths, a basic theory that is popularly believed today. In contradiction, the particle theory advocates envisioned that several colors were obtained from particles holding either various masses or moving at various speeds.
All waves are perceived to experience refraction when they transpire from one means to another means. Light, similar to any wave, is apprehended to refract as it transfers from one medium into another medium.