Answer: The ratio of the number of oxygen molecules to the number of nitrogen molecules in these flasks is 1: 1
Explanation:
According to avogadro's law, equal volumes of all gases at same temperature and pressure have equal number of moles.
According to avogadro's law, 1 mole of every substance contains avogadro's number
of particles.
Thus as oxygen and nitrogen are at same temperature and pressure and are in equal volume flasks , they have same number of moles and thus have same number of molecules.
The ratio of the number of oxygen molecules to the number of nitrogen molecules in these flasks is 1: 1
The answer is most likely C
Answer : The volume of gas occupy at
is, 1.25 L
Explanation :
Charles' Law : It states that volume of the gas is directly proportional to the temperature of the gas at constant pressure and number of moles.
Mathematically,

where,
are the initial volume and temperature of the gas.
are the final volume and temperature of the gas.
We are given:

Putting values in above equation, we get:

Therefore, the volume of gas occupy at
is, 1.25 L
Answer:
36s^5
Explanation:
We have;
M2X3 (s)------> 2M^3+(aq) + 3X^2-(aq)
If [M^3+(aq)] = [X^2-(aq)] = s
We then have;
Ksp = (2s)^2 * (3s)^3
Ksp = 4s^2 * 9s^3
Ksp = 36s^5
Note that Ksp is known as the solubility product. It is an equilibrum equation that shows the solubility of a solute in water.
pH solution = 8.89
<h3>Further explanation</h3>
Given
The concentration of HBr solution = 1.3 x 10⁻⁹ M
Required
the pH
Solution
HBr = strong acid
General formula for strong acid :
[H⁺]= a . M
a = amount of H⁺
M = molarity of solution
HBr⇒H⁺ + Br⁻⇒ amount of H⁺ = 1 so a=1
Input the value :
[H⁺] = 1 x 1.3 x 10⁻⁹
[H⁺] = 1.3 x 10⁻⁹
pH = - log [H⁺]
pH = 9 - log 1.3
pH = 8.89