<span>AnalStage. </span>According to Freud, a<span>dults fixated in this area could feel constantly out
of control or could need to be in control all the time. Pleasure focus
is on the anus, which occurs when a child learns to control bladder and bowel
movements. Fixation in this area can be caused from struggles during potty
training.</span>
Answer:
8.8 m and 52.5 m
Explanation:
The vertical component and horizontal component of water velocity leaving the hose are


Neglect air resistance, vertically speaking, gravitational acceleration g = -9.8m/s2 is the only thing that affects water motion. We can find the time t that it takes to reach the blaze 10m above ground level



t = 3.49 or t = 0.58
We have 2 solutions for t, one is 0.58 when it first reach the blaze during the 1st shoot up, the other is 3.49s when it falls down
t is also the times it takes to travel across horizontally. We can use this to compute the horizontal distance between the fire-fighters and the building


That just depends on the mass of the object and I think it will accelerate forwards
The kinematic equations are used to <span>quantify motion in the case of uniform acceleration.
The other name is :
SUVAT equations, where the letters signify:
displacement (s),
initial velocity (u),
final velocity (v),
acceleration (a), and
time (t).
There are three equations are attached in the picture: </span>