The gravitational force between Mars and the Sun is 
Explanation:
The magnitude of the gravitational force between two objects is given by the equation:
where
is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between them
In this problem, we have:
is the mass of the Sun
is the mass of Mars
is the average distance Mars-Sun
Substituting into the equation, we find the gravitational force:

So, the closest answer is

Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Answer:
3) Ep = 13243.5[J]
4) v = 17.15 [m/s]
Explanation:
3) In order to solve this problem, we must use the principle of energy conservation. That is, the energy will be transformed from potential energy to kinetic energy. We can calculate the potential energy with the mass and height data, as shown below.
m = mass = 90 [kg]
h = elevation = 15 [m]
Potential energy is defined as the product of mass by gravity by height.
![E_{p}=m*g*h\\E_{p}=90*9.81*15\\E_{p}=13243.5[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%3Dm%2Ag%2Ah%5C%5CE_%7Bp%7D%3D90%2A9.81%2A15%5C%5CE_%7Bp%7D%3D13243.5%5BJ%5D)
This energy will be transformed into kinetic energy.
Ek = 13243.5 [J]
4) The velocity can be determined by defining the kinetic energy, as shown below.
![E_{k}=\frac{1}{2} *m*v^{2} \\v = \sqrt{\frac{2*E_{k} }{m} }\\ v= \sqrt{\frac{2*13243.5 }{90} }\\v=17.15[m/s]](https://tex.z-dn.net/?f=E_%7Bk%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%20%5C%5Cv%20%3D%20%5Csqrt%7B%5Cfrac%7B2%2AE_%7Bk%7D%20%7D%7Bm%7D%20%7D%5C%5C%20v%3D%20%5Csqrt%7B%5Cfrac%7B2%2A13243.5%20%7D%7B90%7D%20%7D%5C%5Cv%3D17.15%5Bm%2Fs%5D)
The answer to your question is Metal
<em>Convert 1nanosecond in to its SI init</em>
<em>In SI units, nano is 1000th part of micro which in turn is 1000th part of mini which in turn is 1000th part of main unit. Now, when you affix nano to any unit, here in case, second, it means that you are referring to 1000th part of 1000th part of 1000th part of second or in short, 1000000000th(10^9) part of a second.</em>
<em>In SI units, nano is 1000th part of micro which in turn is 1000th part of mini which in turn is 1000th part of main unit. Now, when you affix nano to any unit, here in case, second, it means that you are referring to 1000th part of 1000th part of 1000th part of second or in short, 1000000000th(10^9) part of a second.So to convert nanosecond into second, just multiply the nanosecond with 0.000000001 or (10^-9)</em>