Answer:
surface temperature of the chip located 120 mm Ts=42.5°C
surface temperature of the chip in Mexico Ts=46.9°C
Explanation:
from the energy balance equation we have to:
q=E=30W
from Newton´s law:
Ts=Tα+(q/(h*A)), where A=l^2
N=h/k=0.04*(Vl/V)^0.85*Pr^1/3
data given:
l=0.12 m
v=10 m/s
k=0.0269 W/(m*K)
Pr=0.703
Replacing:
h=0.04*(0.0269/0.12)*(10*0.12)/((16*69x10^-6))^0.85*(0.703^1/3) = 107 W/m^2*K
The surface temperature at sea level is equal to:
Ts=25+(30x10^-3/107*0.004^2)=42.5°C
h=0.04*(0.0269/0.12)*((10*0.12)/(21*81x10^-6))^0.85*(0.705^1/3)=85.32 W/(m*K)
the surface temperature at Mexico City is equal to:
Ts=25+(30x10^-3/85.32*0.004^2)=46.9°C
Answer:
Explanation:
Heat is probably the easiest energy you can use to change your physical state. The atoms in a liquid have more energy than the atoms in a solid.
An electromagnetic wave of a frequency between about 104<span> and 10</span>11<span> or 10</span>12<span> Hz, as used for long-distance communication</span>
When saturated air is cooled, it simply reaches its dew point. Dew point is simply the temperature at which dew begins to form.
Dew point of saturated air is already pre-determined by how much water vapor the air contains. A state of saturation exists when the air is holding the maximum amount of water vapor possible at the existing temperature and pressure. The higher the dew point, the higher the moisture content of the air. Cooling does not change the dew point of saturated air, rather its the level of saturation.
So if the air has more moisture, dew will form at a higher temperature and vice versa, but dew point is NEVER EVER GREATER than the air temperature.
Answer:
(a) 13.6 eV
(b) 10.2 V
Explanation:
a) Ionization potential energy is defined as the minimum energy required to excite a neutral atom to its ionized state i.e basically the minimum energy required to excite an electron from n=1 to infinity.
Energy of a level, n, in Hydrogen atom is, 
Now ionization potential can be calculated as

Substitute all the value of energy and n in above equation.

Therefore, the ionization potential is 13.6 eV.
b) This is the energy required to excite a atom from ground state to its excited state. When electrons jumps from ground state level(n=1) to 1st excited state(n=2) the corresponding energy is called 1st excitation potential energy and corresponding potential is called 1st excitation potential.
So, 1st excitation energy = E(n 2)- E(n = 1)

Now we can find that 1st excitation energy is 10.2 eV which gives,

Therefore, the 1st excitation potential is 10.2V.