
m mass earth
M mass sun
g gravitational constant = 6,6743 x 10 ⁻¹¹
R distance between sun and earth (radius of orbit)
Answer:
q=0.06 C
Explanation:
Given that
Net flux 
Lets take charge inside Gaussian surface = q C
We know that


Now by putting the values in the above equation we get


q=0.06 C
Therefore the net charge inside the surface will be 0.06 C.
q=0.06 C
Answer:
sucking in <u>air</u> through the <u>turbine.</u>
Explanation:
When an airplane turbine operates, it sucks air through it, compresses the air, causes its pressure to increase in the same way as its temperature and ejects it at high speed through the nozzle-shaped output, creating a high output speed and push force capable of moving the plane horizontally.
Vehicles of the fire department are equipped with water pumps of high pressure, in such a way that, when operating, send a flow of water with high pressure and speed through the hose, this force output of the water is sometimes much greater than the force with which the fireman holds the hose, and hence the difficulty to maneuver the hose.
Now when the fireman points the hose with the water at high pressure and speed coming out of it, into a wall close enough. The Fireman will experience newton's third law in all its splendor, which says that every force of action leads to a reaction, so that the reaction could hurt the fireman operating the hose.
Answer: D meteoroid
Explanation:
Meteoroid is the smallest among them. It is a tiny asteroid or the broken-off crumb of comets and sometimes planets. It ranges in size from a grain of sand to boulders 3 feet (1 meter) wide. When meteoroids collide with a planet's atmosphere, they become meteors. If those meteors survive the atmosphere and hit the planet's surface, their remains are called meteorites
Answer:
(a)F= 3.83 * 10^3 N
(b)Altitude=8.20 * 10^5 m
Explanation:
On the launchpad weight = gravitational force between earth and satellite.
W = GMm/R²
where R is the earth radius.
Re-arranging:
WR² / GM = m
m = 4900 * (6.3 * 10^6)² / (6.67 * 10^-11 * 5.97 * 10^24) = 488 kg
The centripetal force (Fc) needed to keep the satellite moving in a circular orbit of radius (r) is:
Fc = mω²r
where ω is the angular velocity in radians/second. The satellite completes 1 revolution, which is 2π radians, in 1.667 hours.
ω = 2π / (1.667 * 60 * 60) = 1.05 * 10^-3 rad/s
When the satellite is in orbit at a distance (r) from the CENTRE of the earth, Fc is provided by the gravitational force between the earth and the satellite:
Fc = GMm/r²
mω²r = GMm / r²
ω²r = GM / r²
r³ = GM/ω² = (6.67 * 10^-11 * 5.97 * 10^24) / (1.05 * 10^-3)²
r³ = 3.612 * 10^20
r = 7.12 * 10^6 m
(a)
F = GMm/r²
F=(6.67 * 10^-11 * 5.97 * 10^24 * 488) / (7.12 * 10^6 )²
F= 3.83 * 10^3 N
(b) Altitude = r - R = (7.12 * 10^6) - (6.3 * 10^6) = 8.20 * 10^5 m