Answer:
the number of laps in the case when he run for 50 minutes is 18,333.33
Explanation:
The computation of the number of laps in the case when he run for 50 minutes is shown below:
Given that
He runs 440m lap in 1.2 minutes
So in 50 minutes he can have laps of
= 440 × 50 ÷ 1.2
= 18,333.33 laps
hence, the number of laps in the case when he run for 50 minutes is 18,333.33
Answer:-
,
, ![[CO_3^2^-]=0.254M](https://tex.z-dn.net/?f=%5BCO_3%5E2%5E-%5D%3D0.254M)
Solution:- We are asked to calculate the molarity of sodium carbonate solution as well as the sodium and carbonate ions.
Molarity is moles of solute per liter of solution. We have been given with 6.73 grams of sodium carbonate and the volume of solution is 250.mL. Grams are converted to moles and mL are converted to L and finally the moles are divided by liters to get the molarity of sodium carbonate.
Molar mass of sodium carbonate is 105.99 gram per mol. The calculations for the molarity of sodium carbonate are shown below:

= 
So, molarity of sodium carbonate solution is 0.254 M.
sodium carbonate dissociate to give the ions as:

There is 1:2 mol ratio between sodium carbonate and sodium ion. So, the molarity of sodium ion will be two times of sodium carbonate molarity.
= 0.508 M
There is 1:1 mol ratio between sodium carbonate and carbonate ion. So, the molarity of carbonate ion will be equal to the molarity of sodium carbonate.
![[CO_3^2^-]=0.254M](https://tex.z-dn.net/?f=%5BCO_3%5E2%5E-%5D%3D0.254M)
Losing eltron is the answer
Nonmetals which are located in the second row form pi bonds
more easily than the elements situated in the third row and below. Actually there
are no compounds or molecules known that forms covalent bonds to the noble gas
Ne and Ar. Hence the other second row element which is Carbon, is the element that
forms
pi bonds most readily.
Answer:
<span>C</span>