Answer: radon (atomic mass 222 amu
Explanation:
To calculate the rate of diffusion of gas, we use Graham's Law.
This law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows:
atomic mass of krypton= 83.8 amu
atomic mass of argon= 39.95 amu
atomic mass of xenon = 131.3 amu
atomic mass of radon= 222 amu
Thus as atomic mass of radon is highest, its rate of diffusion is slowest.
Answer : The final temperature of the metal block is, 
Explanation :

As we know that,

.................(1)
where,
q = heat absorbed or released
= mass of aluminum = 55 g
= mass of water = 0.48 g
= final temperature = ?
= temperature of aluminum = 
= temperature of water = 
= specific heat of aluminum = 
= specific heat of water= 
Now put all the given values in equation (1), we get
![55g\times 0.900J/g^oC\times (T_{final}-25)^oC=-[0.48g\times 4.184J/g^oC\times (T_{final}-25)^oC]](https://tex.z-dn.net/?f=55g%5Ctimes%200.900J%2Fg%5EoC%5Ctimes%20%28T_%7Bfinal%7D-25%29%5EoC%3D-%5B0.48g%5Ctimes%204.184J%2Fg%5EoC%5Ctimes%20%28T_%7Bfinal%7D-25%29%5EoC%5D)

Thus, the final temperature of the metal block is, 
Answer:
![K_2=\frac{[NOBr]^4_{eq}}{[NO]^4_{eq}[Br]^2_{eq}}](https://tex.z-dn.net/?f=K_2%3D%5Cfrac%7B%5BNOBr%5D%5E4_%7Beq%7D%7D%7B%5BNO%5D%5E4_%7Beq%7D%5BBr%5D%5E2_%7Beq%7D%7D)
Explanation:
Hello,
In this case, for the equilibrium condition, the equilibrium constant is defined via the law of mass action, which states that the division between the concentrations of the products over the concentration of the reactants at equilibrium equals the equilibrium constant, for the given reaction:

The suitable equilibrium constant turns out:
![K_2=\frac{[NOBr]^4_{eq}}{[NO]^4_{eq}[Br]^2_{eq}}](https://tex.z-dn.net/?f=K_2%3D%5Cfrac%7B%5BNOBr%5D%5E4_%7Beq%7D%7D%7B%5BNO%5D%5E4_%7Beq%7D%5BBr%5D%5E2_%7Beq%7D%7D)
Or in terms of the initial equilibrium constant:

Since the second reaction is a doubled version of the first one.
Best regards.
Answer:
Complete ionic:
.
Net ionic:
.
Explanation:
Start by identifying species that exist as ions. In general, such species include:
- Soluble salts.
- Strong acids and strong bases.
All four species in this particular question are salts. However, only three of them are generally soluble in water:
,
, and
. These three salts will exist as ions:
- Each
formula unit will exist as one
ion and one
ion. - Each
formula unit will exist as one
ion and two
ions (note the subscript in the formula
.) - Each
formula unit will exist as one
and two
ions.
On the other hand,
is generally insoluble in water. This salt will not form ions.
Rewrite the original chemical equation to get the corresponding ionic equation. In this question, rewrite
,
, and
(three soluble salts) as the corresponding ions.
Pay attention to the coefficient of each species. For example, indeed each
formula unit will exist as only one
ion and one
ion. However, because the coefficient of
in the original equation is two,
alone should correspond to two
ions and two
ions.
Do not rewrite the salt
because it is insoluble.
.
Eliminate ions that are present on both sides of this ionic equation. In this question, such ions include one unit of
and two units of
. Doing so will give:
.
Simplify the coefficients:
.
Answer:
inspiration means
the process of being mentally stimulated to do or feel something, especially to do something creative.