Answer:
<em>Different rocks have high, medium, and low melting points.</em>
Explanation:
There is a considerable range of melting temperatures for different compositions of magma. All the silicates are molten at about 1200°C (when a part of rock) and all are solid when cooled to about 600°C. Often the silicates are grouped as high, medium and low-melting point solids.
Answer:
The fluoride which precipitates first is CaF₂
Explanation:
When F⁻ is added, CaF₂ and BaF₂ are produced following the ksp equation:
For CaF₂:
Ksp = 3.2x10⁻¹¹ = [Ca²⁺] [F⁻]²
<em>Where [Ca²⁺] = 0.075M * {35mL / (25mL + 35mL)} = 0.04375M</em>
3.2x10⁻¹¹ = [0.04375M] [F⁻]²
[F⁻]² = 7.31x10⁻¹⁰
[F⁻] = 2.7x10⁻⁵M
<h3>CaF₂ begins precipitation when [F⁻] = 2.7x10⁻⁵M.</h3>
For BaF₂:
Ksp = 1.5x10⁻⁶ = [Ba²⁺] [F⁻]²
<em>Where [Ba²⁺] = 0.090M * {25mL / (25mL + 35mL)} = 0.0375M</em>
1.5x10⁻⁶ = [0.0375M] [F⁻]²
[F⁻]² = 4x10⁻⁵
[F⁻] = 6.3x10⁻³M
BaF₂ begins precipitation when [F⁻] = 6.3x10⁻³M
Thus, the fluoride which precipitates first is CaF₂
Quartzite is a nonfoliated metamorphic rock
Answer:
sulfur promotes oxide-reduction reactions.
Explanation:
In stagnant water, some solutes tend to precipitate. When Sulfur precipitate and touch a metal, Sulfur is being reduced and the metal is oxidated. This depends of potential redox of each element.
Answer: Temperature is an objective measurement of how hot or cold an object is. It can be measured with a thermometer or a calorimeter. It is a means of determining the internal energy contained within a given system.
Explanation: