Answer:
One of the best ways to gain insights in a Design Thinking process is to carry out some form of prototyping. This method involves producing an early, inexpensive, and scaled down version of the product in order to reveal any problems with the current design. Prototyping offers designers the opportunity to bring their ideas to life, test the practicability of the current design, and to potentially investigate how a sample of users think and feel about a product.
Prototypes are often used in the final, testing phase in a Design Thinking process in order to determine how users behave with the prototype, to reveal new solutions to problems, or to find out whether or not the implemented solutions have been successful. The results generated from these tests are then used to redefine one or more of the problems established in the earlier phases of the project, and to build a more robust understanding of the problems users may face when interacting with the product in the intended environment.
hope it's helpful
thank you
and please follow me
Answer:
Elastic Collision
Inelastic Collision
The total kinetic energy is conserved. The total kinetic energy of the bodies at the beginning and the end of the collision is different.
Momentum does not change. Momentum changes.
No conversion of energy takes place. Kinetic energy is changed into other energy such as sound or heat energy.
Highly unlikely in the real world as there is almost always a change in energy. This is the normal form of collision in the real world.
An example of this can be swinging balls or a spacecraft flying near a planet but not getting affected by its gravity in the end.
Answer: The statement "The charge cannot be created or destroyed describes the principle of the conservation of charge".
Explanation:
According to the conservation of charge, the charge can neither be created nor destroyed. It can be transferred from one system to another.
In an isolated system, the total electric charge remains constant. The net quantity of electric charge is always conserved in the universe.
Therefore, "the charge cannot be created or destroyed" describes the principle of the conservation of charge.
E = <u>kQ</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>
(r + h)²
where,
k = 9 × 10^9Nm²C^-2
Q = total charge, 300uC = 300 × 10^ -6C
r = 8 × 10^ -2m
h = 16 × 10^ -2m
then,
E = <u>9</u><u>e</u><u>9</u><u> </u><u>*</u><u> </u><u>3</u><u>0</u><u>0</u><u>e</u><u>^</u><u>-</u><u>6</u><u> </u><u> </u><u> </u><u> </u>
(8e^-2 + 16e^-2)²
E = 4687500N/C