Answer:
The Magnifying power of a telescope is 
Explanation:
Radius of curvature R = 5.9 m = 590 cm
focal length of objective
= 
⇒
= 
⇒
= 295 cm
Focal length of eyepiece
= 2.7 cm
Magnifying power of a telescope is given by,



therefore the Magnifying power of a telescope is 
Answer:
Rp = 10 Ohms; I = 0.9 Amps
Explanation:
Since, there are two resistors each with 20Ω connected in parallel, the total resistance of the combination (Rp) of the circuit is as follows:
i.e 1/Rp = (1/R1 + 1/R2)
1/Rp = (1/20Ω + 1/20Ω)
1/Rp = (1 + 1)/20Ω
1/Rp = 2/20Ω
1/Rp = 1/10Ω
To get the value of Rp, cross multiply
Rp x 1 = 10Ω x 1
Rp = 10Ω
Apply the formula
Voltage V = Current I x Total resistance Rp
I = V/Rp
I = 9V/10Ω
I = 0.9 Amps
Thus, the total resistance is 10 Ohms, the current through the ammeter is 0.9 Amps
Answer:
acceleration or a deceleration
Explanation:
The gradient of a position - time graph represent the velocity.
a straight line indicate a constant velocity (gradient ≠ 0)
when it is a parallel line to the time axis , it indicated no movement
when it is a curved line it indicates a changing velocity (either acceleration or a deceleration) as mentioned in the graph
Answer:
A
Explanation:
The most important part about this is not only that objects pull on each other, but that two objects attract each other with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between them. This is known as Newton's law of universal gravitation.