✒ Answer
In the case of still lake and ocean water how are they different in transferring energy from one location to another?
- Answer:Energy is transferred in waves through the vibration of particles
In what direction will you move a rope to create transverse waves?
- Answer: in the direction of the black arrow
In what direction will you move a slinky to create longitudinal waves?
- Answer: parallel to the direction that energy is transported.
Acceleration will be 9.81 if it goes downwards. If it accelerates upwards it will be -9.81m/s^2
First of all, I is proportional V according to the Ohm's Law. R is merely a constant you need to obtain an equation. However, it is true that R changes with temperature and pressure, therefore Ohm's Law is only applicable in an invariable environment. Also this constant R is different for different materials.
So, do not get confused.
Ohm's law is not a universal law, please remember that as well. Some materials do not follow it and we call them non-ohmic conductors. I hope I helped! ^-^
Answer:
a) v = 2.4125 m / s , b) Em_{f} / Em₀ = 0.89
Explanation:
a) This is an inelastic crash problem, the system is made up of the four carriages, so the forces during the crash are internal and the moment is conserved
Initial
p₀ = m v₁ + 3 m v₂
Final
= (4 m) v
p₀ =p_{f}
m (v₁ + 3 v₂) = 4 m v
v = (v₁ +3 v₂) / 4
Let's calculate
v = (3.86 + 3 1.93) / 4
v = 2.4125 m / s
b) the initial mechanical energy is
Em₀ = K₁ + 3 K₂
Em₀ = ½ m v₁² + ½ 3m v₂²
The final mechanical energy
= K
Em_{f} = ½ 4 m v²
The fraction of energy lost is
Em_{f} / Em₀ = ½ 4m v² / ½ m (v₁² +3 v₂²)
Em_{f} / Em₀ = 4 v₂ / (v₁² + 3 v₂²)
Em_{f} / Em₀ = 4 2.4125² / (3.86² + 3 1.93²)
Em_{f} / em₀ = 23.28 / 26.07
Em_{f} / Em₀ = 0.89
Because when you open the faucet, you want the water to
rush out with pressure, not just dribble or ooze out. The
water has to be supplied to the user with pressure. Either
you supply it from a height, or else you'll need to use pumps
to make the pressure.