Virtual upright and the same size
Answer:
The minimum coefficient of friction required is 0.35.
Explanation:
The minimum coefficient of friction required to keep the crate from sliding can be found as follows:


Where:
μ: is the coefficient of friction
m: is the mass of the crate
g: is the gravity
a: is the acceleration of the truck
The acceleration of the truck can be found by using the following equation:


Where:
d: is the distance traveled = 46.1 m
: is the final speed of the truck = 0 (it stops)
: is the initial speed of the truck = 17.9 m/s
If we take the reference system on the crate, the force will be positive since the crate will feel the movement in the positive direction.

Therefore, the minimum coefficient of friction required is 0.35.
I hope it helps you!
Answers:
a) -2.54 m/s
b) -2351.25 J
Explanation:
This problem can be solved by the <u>Conservation of Momentum principle</u>, which establishes that the initial momentum
must be equal to the final momentum
:
(1)
Where:
(2)
(3)
is the mass of the first football player
is the velocity of the first football player (to the south)
is the mass of the second football player
is the velocity of the second football player (to the north)
is the final velocity of both football players
With this in mind, let's begin with the answers:
a) Velocity of the players just after the tackle
Substituting (2) and (3) in (1):
(4)
Isolating
:
(5)
(6)
(7) The negative sign indicates the direction of the final velocity, to the south
b) Decrease in kinetic energy of the 110kg player
The change in Kinetic energy
is defined as:
(8)
Simplifying:
(9)
(10)
Finally:
(10) Where the minus sign indicates the player's kinetic energy has decreased due to the perfectly inelastic collision
Answer:
T₂ = 123.9 N, θ = 66.2º
Explanation:
To solve this exercise we use the law of equilibrium, since the diaphragm does not appear, let's use the adjoint to see the forces in the system.
The tension T1 = 100 N, we create a reference frame centered on the pole
X axis
T₁ₓ -
= 0
T_{2x}= T₁ₓ
Y axis y
T_{1y} + T_{2y} - 200N = 0
T_{2y} = 200 -T_{1y}
let's use trigonometry to find the component of the stresses
sin 60 = T_{1y} / T₁
cos 60 = t₁ₓ / T₁
T_{1y} = T₁ sin 60
T1x = T₁ cos 60
T_{1y}y = 100 sin 60 = 86.6 N
T₁ₓ = 100 cos 60 = 50 N
for voltage 2 it is done in the same way
T_{2y} = T₂ sin θ
T₂ₓ = T₂ cos θ
we substitute
T₂ sin θ= 200 - 86.6 = 113.4
T₂ cos θ = 50 (1)
to solve the system we divide the two equations
tan θ = 113.4 / 50
θ = tan⁻¹ 2,268
θ = 66.2º
we caption in equation 1
T₂ cos 66.2 = 50
T₂ = 50 / cos 66.2
T₂ = 123.9 N