1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OlgaM077 [116]
2 years ago
15

Someone help this is a test and i need to finish this quick i will give brainliest of it lets me

Physics
1 answer:
tekilochka [14]2 years ago
7 0

Sorry, I don't know but I think the correct answer is the first option.

You might be interested in
A truck is driving north at 35 miles per hour and passes a car going south at 40 miles per hour. What is the speed of the car fr
inna [77]

Answer:

70

Explanation:

right...

7 0
2 years ago
Read 2 more answers
Two stones are launched from the top of a tall building. One stoneis thrown in a direction 30.0^\circ above the horizontal with
Butoxors [25]

Answer:

Part A)

t(1) > t(2), the stone thrown 30 above the horizontal spends more time in the air.

Part B)

x(f1) > x(f2), the first stone will land farther away from the building.

Explanation:

<u>Part A)</u>

Let's use the parabolic motion equation to solve it. Let's define the variables:

  • y(i) is the initial height, it is a constant.
  • y(f) is the final height, in our case is 0
  • v(i) is the initial velocity (v(i)=16 m/s)
  • θ1 is the first angle, 30°
  • θ2 is the first angle, -30°

For the first stone

y_{f1}=y_{i1}+v*sin(\theta_{1})t_{1}-0.5gt_{1}^{2}              

0=y_{i1}+16*sin(30)t_{1}-0.5*9.81*t_{1}^{2}

0=y_{i1}+8t_{1}-4.905*t_{1}^{2} (1)  

For the second stone  

0=y_{i2}+16*sin(-30)t_{2}-4.905t_{2}^{2}    

0=y_{i2}-8t_{2}-4.905t_{2}^{2} (2)            

 

If we solve the equation (1) we will have:

t_{1}=\frac{-8\pm \sqrt{64+19.62*y_{i}}}{-9.81}  

We can do the same procedure for the equation (2)

t_{1}=\frac{8\pm \sqrt{64+19.62*y_{i}}}{-9.81}

We can analyze each solution to see which one spends more time in the air.

It is easy to see that the value inside the square root of each equation is always greater than 8, assuming that the height of the building is > 0. Now, to get positive values of t(1) and t(2) we need to take the negative option of the square root.

Therefore, t(1) > t(2), it means that the stone thrown 30 above the horizontal spends more time in the air.

<u>Part B)</u>

We can use the equation of the horizontal position here.

<u>First stone</u>

x_{f1}=x_{i1}+vcos(30)t_{1}

x_{f1}=0+13.86*t_{1}

x_{f1}=13.86*t_{1}

<u>Second stone</u>

x_{2}=x_{i2}+vcos(-30)t_{2}

x_{1}=0+13.86*t_{1}

x_{1}=13.86*t_{2}

Knowing that t(1) > t(2) then x(f1) > x(f2)

Therefore, the first stone will land farther away from the building.

They land at different points at different times.

I hope it helps you!

3 0
3 years ago
Suppose that a worker in Freedonia can produce either 6 units of corn or 2 units of wheat per year, and a worker in Sylvania can
Salsk061 [2.6K]

Answer:

a 30 units of corn and 30 units of wheat.

Explanation:

Initially freedonia has 5 workers producing 30 units of of corn (6 units per worker) and another 5 workers producing 10 units of wheat (2 units per worker)

With the trade agreed between the two countries Freedonia can have all of it's 10 workers producing corn, thereby producing 60 units of corn

30 of these are traded for 30 units of wheat therefore allowing the country to consume 30 units of each product.

8 0
3 years ago
I cant solve this problem, and our teacher said that this would be in the test we'll have tomorrow, can someone help me?
Ad libitum [116K]

Answer:

d = 11.1 m

Explanation:

Since the inclined plane is frictionless, this is just a simple application of the conservation law of energy:

\frac{1}{2} m {v}^{2}  = mgh

Let d be the displacement along the inclined plane. Note that the height h in terms of d and the angle is as follows:

\sin(15)  =  \frac{h}{d}  \\ or \: h = d \sin(15)

Plugging this into the energy conservation equation and cancelling m, we get

{v}^{2}  = 2gd \sin(15)

Solving for d,

d =  \frac{ {v}^{2} }{2g \sin(15) }  =  \frac{ {(7.5 \:  \frac{m}{s}) }^{2} }{2(9.8 \:  \frac{m}{ {s}^{2} })(0.259)}   \\ = 11.1 \: m

3 0
3 years ago
A chef places an open sack of flour on a kitchen scale. The scale reading of
Novay_Z [31]

Answer:

Explanation:

Given

Initial reading on scale =40 N

So, we can conclude that weight of the sack is 40 N

After this a 10 N force is applied upward on the sack such that the net force becomes (40-10) N downward (because downward force is more)

This net downward force is the resultant of earth graviational pull and the applied upward force.

So, this downward force acts on the machine which inturn applies an upaward force of same magnitude called Normal reaction.

This situation can be diagramatically represented by figure given below  

4 0
3 years ago
Other questions:
  • mike shoots a large marble (Marble A, mass:0.05 kg) at a smaller marble (Marble B, mass: 0.03 kg) that is sitting still. Marble
    10·1 answer
  • Good day can I get some help please?​
    12·1 answer
  • From least to most dense, the media are: air, water, polyethylene, and flint glass.
    11·1 answer
  • You walk 200m south, then 50m east. What is your displacement?
    5·1 answer
  • Define What is<br> Newton's third law of<br> motion?
    15·2 answers
  • A monkey pushes a rock horizontally on a frictionless table with a net force of 10 N for 2.0 m. How much kinetic energy does the
    7·1 answer
  • Choose the element that has a smaller atomic radius :scandium or selenium
    11·1 answer
  • Electron can only lose energy by transition from one allowed orbit to another ______ electromagnetic radiation
    6·1 answer
  • A device that uses electricity and magnetism to create motion is called a
    12·2 answers
  • How far should flammable material be kept from electrical panels?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!