From the periodic table:
molecular mass of carbon = 12 grams
molecular mass of fluorine = 18.99 grams
molecular mass of chlorine = 35.5 grams
Therefore:
one mole of CF2Cl2 = 12 + 2(18.99) + 2(35.5) = 120.98 grams
Therefore, we can use cross multiplication to find the number of moles in 79.34 grams as follows:
mass = (79.34 x 1) / 120.98 = 0.6558 moles
Now, one mole contains 6.022 x 10^23 molecules, therefore:
number of molecules in 0.65548 moles = 0.6558 x 6.022 x 10^23
= 3.949 x 10^23 molecules
The large piece of jewelry that has a mass of 132.6 g and when is submerged in a graduated cylinder that initially contains 48.6 ml water and the volume increases to 61.2 ml once the piece of jewelry is submerged, has a density of: 10.523 g/ml
To solve this problem the formulas and the procedures that we have to use are:
Where:
- d= density
- m= mass
- v= volume
- v(f) = final volume
- v(i) = initial volume
Information about the problem:
- m = 132.6 g
- v(i) = 48.6 ml
- v(f) = 61.2 ml
- v = ?
- d =?
Applying the volume formula we get:
v = v(f)-v(i)
v = 61.2 ml - 48.6 ml
v = 12.6 ml
Applying the density formula we get:
d = m/v
d = 132.6 g/12.6 ml
d = 10.523 g/ml
<h3>What is density?</h3>
It is a physical quantity that expresses the ratio of the body mass to the volume it occupies.
Learn more about density in: brainly.com/question/1354972
#SPJ4
Answer:
For part (a): pHsol=2.22
Explanation:
I will show you how to solve part (a), so that you can use this example to solve part (b) on your own.
So, you're dealing with formic acid, HCOOH, a weak acid that does not dissociate completely in aqueous solution. This means that an equilibrium will be established between the unionized and ionized forms of the acid.
You can use an ICE table and the initial concentration ofthe acid to determine the concentrations of the conjugate base and of the hydronium ions tha are produced when the acid ionizes
HCOOH(aq]+H2O(l]⇌ HCOO−(aq] + H3O+(aq]
I 0.20 0 0
C (−x) (+x) (+x)
E (0.20−x) x x
You need to use the acid's pKa to determine its acid dissociation constant, Ka, which is equal to
Answer:
did you mean moles? If so, answer is down below.
Explanation:
there are 0.106 moles of glucose in 19.1 g of glucose.
Answer:
[H₃O⁺] = [F⁻] = 2.2 x 10⁻² M. & [OH⁻] = 4.55 x 10⁻¹³.
Explanation:
- For a weak acid like HF, the dissociation of HF will be:
<em>HF + H₂O ⇄ H₃O⁺ + F⁻.</em>
[H₃O⁺] = [F⁻].
<em>∵ [H₃O⁺] = √Ka.C,</em>
Ka = 6.8 x 10⁻⁴, C = 0.710 M.
∴ [H₃O⁺] = √Ka.C = √(6.8 x 10⁻⁴)(0.710) = 2.197 x 10⁻² M ≅ 2.2 x 10⁻² M.
<em>∴ [H₃O⁺] = [F⁻] = 2.2 x 10⁻² M.</em>
<em></em>
∵ [H₃O⁺][OH⁻] = 10⁻¹⁴.
<em>∴ [OH⁻] = 10⁻¹⁴/[H₃O⁺]</em> = 10⁻¹⁴/(2.2 x 10⁻²) = <em>4.55 x 10⁻¹³.</em>