To balance this equation simply place the coefficient 2 in front of both the iron metal and the iron II oxide FeO.
but heres a way to solve it
An athlete takes a deep breath, inhaling 1.85 L of air at 21°C and 754 mm Hg.
T
How many moles of air are in the breath? How many molecules?
Gas constant, R= 8.314 J mol ¹ K-1
PV = nRT
PV
RT
h=
=
P
= 0.08206 L atm mol-1 K-1
= 62.36 L Torr mol-1 K-1 -
1 atm = 760 mm Hg = 760 Torr
754 Forr 1.85€
6236 Jerr 294K
A change in the force of gravity on an object will affect its weight.
Since that is a lengthy one I to have the same problem in chem. I always trust google and ask question but question of the elements of the periodic table and one by one it will give you the answer and will tell you the formula and the cations
Answer:
- <u><em>You should expect that the ionic bond in LiBr is stronger than the bond in KBr.</em></u>
<u><em /></u>
Explanation:
The<em> ionic bonds</em> are formed by the electrostatic attraction between the ions, cations and anions.
In KBr the cation is K⁺ and the anion is Br⁻.
In LiBr the cation is Li⁺ and the anion is Br⁻.
You must expect that the bond strength depends mainly on the charges present on each ion and the distance between them.
Nevertheless, the effect of the distance between the radius dominate the trendency of the bond strength, which makes that the ionic strength trend be related to the ionic radius trend.
Lithium is a smaller ion than Potassium (both are in the same group and Lithium is above Potassium).
Thus, you should expect that the Li ion is closer to the Br ion than what the K ion is to the Br ion and expect that the bond between a Li ion and the Br ion be stronger than the bond between the K ion and the Br ion.