It’s the third one because Cl has 17 protons bc of the numeric number and 18 electrons bc it’s always the opposite and 18 neutrons because you subtract 35-17=18
The percentage of Chromium in Chromium Oxide is calculated as follow,
Step 1: Calculate Molar mass of Cr₂O₃,
Cr = 51.99 u
O = 16 u
So,
2(51.99) + 3(16) = 103.98 + 48 = 151.98 u
Step 2: Secondly divide molar mass of only chromium with total mass of Cr₂O₃ and multiply with 100.
i.e.
=

× 100
=
68.41 %
So, the %age composition of chromium in chromium oxide is
68.41 %.
The answer is a. troposphere, stratosphere, mesosphere, ionosphere
Answer:
2. All the naturally occurring isotopes of Mg.
Explanation:
You want to know the atomic mass of the magnesium you use in the lab. That’s “natural” magnesium. So, you must use the weighted average of all the naturally occurring isotopes in natural Mg.
1. and 3. are <em>wrong</em>. You won’t get the correct mass for natural Mg if you use only the artificial isotopes for your calculation.
4. is <em>wrong</em>. You must use all the naturally occurring isotopes. The two most abundant isotopes of Mg account for only 90 % of the atoms. If you ignore the other 10 %, your calculation will be wrong.
Answer:
To calculate an electron configuration, divide the periodic table into sections to represent the atomic orbitals, the regions where electrons are contained. Groups one and two are the s-block, three through 12 represent the d-block, 13 to 18 are the p-block and the two rows at the bottom are the f-block.Explanation: