Troposphere, this is the layer of the atmosphere closest to the earths crust.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
<h3>What does Beer-Lambert law state?</h3>
The Beer-Lambert law states that for a given material sample, path length and concentration of the sample are directly proportional to the absorbance of the light.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, we can calculate the molarity of the solution using the following expression.
A = ε × b × c
c = A / ε × b
c = 0.2 / (59 cm⁻¹ M⁻¹) × 1 cm = 0.003 M
where,
- A is the absorbance.
- ε is the path length.
- b is the molar absorptivity coefficient.
- c is the molar concentration.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
Learn more about the Beer-Lambert law here: brainly.com/question/12975133
Answer:
Mass = 99.8 g
Explanation:
Given data:
Mass of potassium nitride = ?
Mass of nitrogen produced = 10.65 g
Solution:
Chemical equation:
2K₃N→ 6K + N₂
Moles of nitrogen:
Number of moles = mass/ molar mass
Number of moles = 10.65 g / 28 g/mol
Number of moles = 0.38 mol
Now we will compare the moles of nitrogen with potassium nitride.
N₂ ; K₃N
1 : 2
0.38 : 2×0.38 =0.76
Mass of potassium nitride:
Mass = molar mass × number of moles
Mass = 131.3 g/mol × 0.76 mol
Mass = 99.8 g