<u>Answer:</u> The value of
of the reaction is 28.38 kJ/mol
<u>Explanation:</u>
For the given chemical reaction:

- The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f_{(product)}]-\sum [n\times \Delta H^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28reactant%29%7D%5D)
The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(SO_2Cl_2(g))})]-[(1\times \Delta H^o_f_{(SO_2(g))})+(1\times \Delta H^o_f_{(Cl_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28SO_2Cl_2%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28SO_2%28g%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28Cl_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(1\times (-364))]-[(1\times (-296.8))+(1\times 0)]=-67.2kJ/mol=-67200J/mol](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-364%29%29%5D-%5B%281%5Ctimes%20%28-296.8%29%29%2B%281%5Ctimes%200%29%5D%3D-67.2kJ%2Fmol%3D-67200J%2Fmol)
- The equation used to calculate entropy change is of a reaction is:
![\Delta S^o_{rxn}=\sum [n\times \Delta S^o_f_{(product)}]-\sum [n\times \Delta S^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20S%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20S%5Eo_f_%7B%28reactant%29%7D%5D)
The equation for the entropy change of the above reaction is:
![\Delta S^o_{rxn}=[(1\times \Delta S^o_{(SO_2Cl_2(g))})]-[(1\times \Delta S^o_{(SO_2(g))})+(1\times \Delta S^o_{(Cl_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20S%5Eo_%7B%28SO_2Cl_2%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20S%5Eo_%7B%28SO_2%28g%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20S%5Eo_%7B%28Cl_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta S^o_{rxn}=[(1\times 311.9)]-[(1\times 248.2)+(1\times 223.0)]=-159.3J/Kmol](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20311.9%29%5D-%5B%281%5Ctimes%20248.2%29%2B%281%5Ctimes%20223.0%29%5D%3D-159.3J%2FKmol)
To calculate the standard Gibbs's free energy of the reaction, we use the equation:

where,
= standard enthalpy change of the reaction =-67200 J/mol
= standard entropy change of the reaction =-159.3 J/Kmol
Temperature of the reaction = 600 K
Putting values in above equation, we get:

Hence, the value of
of the reaction is 28.38 kJ/mol
B because A is for radios of course and C is thermal energy and D is radioactive
548.55 grams of aluminum hydroxide should theoretically form.
Explanation:
Balanced equation for the reaction:
3 NaOH + Al ⇒ Al(OH)3 +3 Na
DATA GIVEN:
mass of NaOH = 842 grams, atomic mass =39.9 grams/mole
mass of Al = 750 grams, atomic mass = 26.9 grams/mole
aluminum hydroxide theoretical yield = ?
Moles of NaOH reacted
number of moles = 
putting the values in the equation
NaOH = 
= 21.1 MOLES OF NaOH
Al = 
= 27.8 moles
from the equation
from 3 moles of NaOH 1 mole of Al(OH)3 is produced
21.1 moles of NaOH will react to give x moles of Al(OH)3
= 
7.03 moles of Al(OH)3 is formed.
and
1 mole of Al(OH)3 is formed from 1 mole of Al in the reaction
so, 27.8 Moles will react to give give 27.8 moles of Al(OH)3 limiting reagent of the given reaction is NaOH
mass of Al(OH)3 =7.03 x 78 (atomic mass of Al(OH)3)
= 548.55 grams
theoretical yield from the given data is 548.55 grams
Answer:
Solids, liquids, and gases are made of tiny particles called atoms and molecules. In a solid, the particles are very attracted to each other. They are close together and vibrate in position but don't move past one another. In a liquid, the particles are attracted to each other but not as much as they are in a solid.