Answer:
Explanation:
At constant pressure and temperature, the mole ratio of the gases is equal to their volume ratio (a consequence of Avogadro's law).
Hence, the <em>complete combustion reaction</em> that has a ratio of 100 ml of gaseous hydrocarbon to 300 ml of oxygen, is that whose mole ratio is 1 mol hydrocarbon : 3 mol of oxygen.
Then, you must write the balanced chemical equations for the complete combustion of the four hydrocarbons in the list of choices, and conclude which has such mole ratio (1 mol hydrocarbon : 3 mol oxygen).
A complete combustion reaction of a hydrocarbon is the reaction with oxygen that produces CO₂ and H₂O, along with the release of heat and light.
<u>a. C₂H₄:</u>
- C₂H₄ (g) + 3O₂ (g) → 2CO₂(g) + 2H₂O (g)
Precisely, for this reaction the mole ratio is 1 mol C₂H₄: 2 mol O₂, hence, this is the right choice.
The following analysis just shows that the other options are not right.
<u>b. C₂H₂:</u>
- 2C₂H₂ (g) + 5O₂ (g) → 4CO₂(g) + 2H₂O (g)
The mole ratio for this reaction is 2 mol C₂H₂ :5 mol O₂.
<u>с. С₃Н₈</u>
- C₃H₈ (g) + 5O₂ (g) → 3CO₂(g) + 4H₂O (g)
The mole ratio is 1 mol C₃H₈ : 5 mol O₂
<u>d. C₂H₆</u>
- 2C₂H₆ (g) +7 O₂ (g) → 4CO₂(g) + 6H₂O (g)
The mole ratio is 2 mol C₂H₆ : 7 mol O₂
Your answer is $20,480.
Hope this Helped!
<h3>Also here is the explanation: </h3><h3>https://www.symbolab.com/solver/equation-calculator/x%3D32000%5Cleft(.8%5Cright)%5E%7B2%7D</h3>
Answer:
An inert gas is one that does not undergo chemical reactions
Noble gases refers to the right most group of the periodic table composed of helium, neon, argon, krypton, xenon, and radon. As you might have seen as an example in class, some noble gases can form chemical compounds, such as XeF4.
or to say:
Halogens and noble gases are two different groups of elements that can be seen on the periodic table. Halogens are found in group 17 and include fluorine, chlorine, bromine, iodine and astatine. Noble gases make up group 18, and include helium, neon, argon, krypton, xenon and radon.
The theoretical yield of NaBr given that 2.36 moles of FeBr₃ reacts is 7.08 moles
<h3>Balanced equation </h3>
2FeBr₃ + 3Na₂S → Fе₂S₃ + 6NaBr
From the balanced equation above,
2 moles FeBr₃ reacted to produce 6 moles of NaBr
<h3>How to determine the theoretical yield of NaBr</h3>
From the balanced equation above,
2 moles FeBr₃ reacted to produce 6 moles of NaBr
Therefore,
2.36 moles FeBr₃ will react to produce = (2.36 × 6) / 2 = 7.08 moles of NaBr
Therefore,
Thus, the theoretical yield of NaBr is 7.08 moles
Learn more about stoichiometry:
brainly.com/question/14735801
#SPJ1
Answer:
The answer to your question is letter A.
Explanation:
Isomers are molecules that have the same molecular formula but have a different structure. The molecule from which are looking an isomer has 5 carbons and 1 double bond. Then we need to look for another molecule with these components.
A.- This molecule has 5 carbons and 1 double bond, This structure is an isomer of the first one.
B.- This molecule has 3 carbons and 1 double bond, it's not an isomer of the first structure.
C. This molecule has 4 carbons and 1 triple bonds, it's not an isomer of the first structure.
D. This molecule has 5 carbons but it doesn't have any double bond, then it's not an isomer of the first structure.