The correct answer is protons and electrons
Abs are not getting mad annoying and piper are you doing ok I don’t know
Answer:
[CO] = 0.078M
[Cl2] = 0.078M
[COCl2] = 0.477M
Explanation:
Based on the reaction:
CO(g) Cl2(g) ⇄ COCl2(g)
<em>Where equilibrium constant, kc, is:</em>
kc = 77.5 = [COCl2] / [CO] [Cl2]
[] represents the equilibrium concentration of each gas. The initial concentration of each gas is:
[CO] = 0.555mol/1.00L = 0.555M
[Cl2] = 0.555M
And equilibrium concentrations are:
[CO] = 0.555M - x
[Cl2] = 0.555M - x
[COCl2] = x
<em>Where x is reaction coordinate</em>
Replacing in kc expression:
77.5 = [x] / [0.555M - x] [0.555M - x]
77.5 = x / 0.308025 - 1.11 x + x²
23.8719 - 86.025 x + 77.5 x² = x
23.8719 - 87.025 x + 77.5 x² = 0
x = 0.477M. Right answer
x = 0.646M. False answer. Produce negative concentrations
Replacing:
<h3>[CO] = 0.555M - 0.477M = 0.078M</h3><h3>[Cl2] = 0.078M</h3><h3>[COCl2] = 0.477M</h3>
And those concentrations are the equilibrium concentrations
Answer:
a,b,e,f,g
Explanation:
Hydrogen bonding is an intermolecular force of attraction between two molecules. It is a special type of dipole-dipole attraction.
In hydrogen bonding, the hydrogen on one molecule binds with an electronegative atom on another molecule usually oxygen, nitrogen and fluorine.
The simple electrostatic attraction leads to strong intermolecular interaction between two molecules.
For the formation of hydrogen bond, a hydrogen atom must be bonded to more electronegative specie usually N, O and F
In H₂O and H₂O₂ ; hydrogen bonds with Oxygen
CH₃NH₂; hydrogen is attached to nitrogen
HF; hydrogen is attached to fluorine
CH₃OH; hydrogen is attached to oxygen
Answer:
An Orbital is best described as the volume of space in which electrons are most often found
Explanation:
As we know atom consists of sub-particles commonly known as protons, neutrons and electrons. The outer space around the nucleus where the probability of finding electrons is maximum is known as orbital. As the electrons are not precisely ordered around the nucleus hence it is not easy to tell the exact position of an electron.
Hence, four quantum numbers are used to locate the position of electrons around the nucleus.
i) Principle Quantum Number:
This number explains the main energy level which tend to increase in energy as the distance of electrons from nucleus are increased. Principle Quantum Numbers are integer number ranging from one to infinity. Hence, increase in this quantum number results in increase of the size of orbital.
ii) Azimuthal Quantum Number:
This Quantum Number explains the direction of particular orbital in 3-dimensional space. Also it is responsible for the shape of an orbital.
iii) Magnetic Quantum Number:
This Quantum Number also tells the direction of orbital in 3D space with respect to x, y and z axis.
iv) Spin Quantum Number:
This Quantum Number tells about the spin direction of an electron about its axis which may be clockwise or anticlockwise.