Answer:
The mixture is not in equilibrium, the reaction will shift to the left.
Explanation:
<em>Based on the equilibrium:</em>
<em>Fe³⁺+ HSCN ⇄ FeSCN²⁺ + H⁺</em>
<em>kc = 30 = [FeSCN²⁺] [H⁺] / [Fe³⁺] [HSCN]</em>
Where [] are concentrations at equilibrium. The reaction is in equilibrium when the ratio of concentrations = kc
Q is the same expression than kc but with [] that are not in equilibrium
Replacing:
Q = [10.0M] [1.0M] / [0.1M] [0.1M]
Q = 1000
As Q > kc, the reaction will shift to the left in order to produce Fe³⁺ and HSCN untill Q = Kc
<em>
</em>
<em>
</em>
<em />
Answer: A
1.68 N
Explanation:
F = ma = 0.024(70.0) = 1.68 N
Neutralization reactions are the reactions type which form salts.
Explanation:
Salts are formed by ionic bonds when the oxidation states of anions and cations are equal and have opposite signs. So one should be highly electronegative in nature and another should be highly electropositive in nature. So the electropositive element will be ready to give electrons and the electronegative element will be ready to accept all the electrons given by the electropositive element. As a whole the compound will be neutrally charged by adding of equal number of positively charged and negatively charged ions.
The reduction or addition of electrons will be occurring in cations and the oxidation or removal of electrons will be occurring in anions.
So the salt formation is based on neutralization reactions.
Answer:
Explanation:
Here we have to use stoichiometry.
First of all, we have to calculate the mass of 100% of yield:
1.7 g ------- 98%
X -------- 100%
X = 1.73 g (approximately)
Second, we have to calculate the mass of N2 that is necessary to react to produce the mass of 1.73g of NH3. To do that, we have to use the Molar mass of N2 and NH3 and don't forget the stoichiometric relationship between them.
Molar Mass N2 : 14x2 = 28 g/mol
Molar Mass NH3: 14 + 3 = 17 g/mol
28g (N2) ------- 17x2 (NH3)
X ------------ 1.73 g
X = 1.42 g (approximately)