A pure substance has "one set of universal properties". This means they have some of the universal properties in common.
<h3>The definition of universal property</h3>
A characteristic that describes some structures up to an isomorphism is known as a universal property in mathematics, more specifically in category theory.
As a result, independent of the construction technique used, some objects can be described using universal properties. For example, one can define polynomial rings as derived from the field of their coefficients, rational numbers as derived from integers, real numbers as derived from integers, and rational numbers as derived from real numbers.
All of these definitions can be made in terms of universal properties. In particular, the concept of universal property offers a simple demonstration of the equality of any real number structures, requiring only that they satisfy the same universal property.
<h3>
What is the universal property of all substances?</h3>
Diamagnetism is a feature that all substances share.
To learn more about Diamagnetism click on the link below:
brainly.com/question/22078990
#SPJ9
100 degree celcius and 0 degree Celsius
The Henderson-Hasselbalch equation can be used to determine the pH of the buffer from the pKa value. The pH of the buffer will be 4.75.
<h3>What is the Henderson-Hasselbalch equation?</h3>
Henderson-Hasselbalch equation is used to determine the value of pH of the buffer with the help of the acid disassociation constant.
Given,
Acid disassociation constant (ka) = 1. 8 10⁻⁵
Concentration of NaOH = 2.0 M
Concentration of CH₃COOH = 2.0 M
pKa value is calculated as,
pKa = -log Ka
pKa = - log (1. 8 x 10⁻⁵)
Substituting the value of pKa in the Henderson-Hasselbalch equation as
pH = - log (1. 8 x 10⁻⁵) + log [2.0] ÷ [2.0]
pH = - log (1. 8 x 10⁻⁵) + log [1]
= 4.745 + 0
= 4.75
Therefore, 4.75 is the pH of the buffer.
Learn more about the Henderson-Hasselbalch equation here:
brainly.com/question/27751586
#SPJ4
Answer:
When the metal reacts with hot, concentrated sulphuric acid, the products of the reaction are copper (II) sulphate, sulphur dioxide and water. Cu + 2H2SO4 = CuSO4 + SO2 + 2H2O. This is a typical redox reaction in which the acid is reduced to SO2, but no hydrogen is produced here