B- 8.2980
C- 11.2603
F- 17.4228
Li- 5.3917
Na- 5.1391
I would say your answer is Na.
Answer:
10 kg of ice will require more energy than the released when 1 kg of water is frozen because the heat of phase transition increases as the mass increases.
Explanation:
Hello!
In this case, since the melting phase transition occurs when the solid goes to liquid and the freezing one when the liquid goes to solid, we can infer that melting is a process which requires energy to separate the molecules and freezing is a process that releases energy to gather the molecules.
Moreover, since the required energy to melt 1 g of ice is 334 J and the released energy when 1 g of water is frozen to ice is the same 334 J, if we want to melt 10 kg of ice, a higher amount of energy well be required in comparison to the released energy when 1 kg of water freezes, which is about 334000 J for the melting of those 10 kg of ice and only 334 J for the freezing of that 1 kg of water.
Best regards!
Yes because molecules is solid
Answer:
Explanation:
Heat required to convert ice to ice at 0⁰C
= mass x specific heat x rise in temperature
= 18 x 2.09 x 20
= 752.4 J .
heat required to convert ice at 0⁰C to water at 0⁰C
mass x latent heat of fusion
= 18 x 336
= 6048 J
Heat required to increase the temperature of water to 100⁰C
= 18 x 4.2 x 100
= 7560 J
Total heat required
7560 + 6048 + 752.4
= 14360.4 J