Answer:
16.2 J
Explanation:
Step 1: Given data
- Specific heat of liquid bromine (c): 0.226 J/g.K
- Volume of bromine (V): 10.0 mL
- Initial temperature: 25.00 °C
- Final temperature: 27.30 °C
- Density of bromine (ρ): 3.12 g/mL
Step 2: Calculate the mass of bromine
The density is equal to the mass divided by the volume.
ρ = m/V
m = ρ × V
m = 3.12 g/mL × 10.0 mL
m = 31.2 g
Step 3: Calculate the change in the temperature (ΔT)
ΔT = 27.30 °C - 25.00 °C = 2.30 °C
The change in the temperature on the Celsius scale is equal to the change in the temperature on the Kelvin scale. Then, 2.30 °C = 2.30 K.
Step 4: Calculate the heat required (Q) to raise the temperature of the liquid bromine
We will use the following expression.
Q = c × m × ΔT
Q = 0.226 J/g.K × 31.2 g × 2.30 K
Q = 16.2 J
That is called an unsaturated solution
Answer:
Explanation:
The answer is (4) 4.0 mol. This is a stoichiometry problem. You start with 2.0 mol of C2H6 and obtain the moles of C by multiplying 2.0 by the mole ratio, in this case 2. 2.0*2=4.0mol.
Answer:
Pure elements:
Hydrogen(H)
Nitrogen(N)
Magnesium (Mg)
Pure Compounds:
Oxygen gas(O2)
Water (H2O)
Ammonia (NH3)
Explanation:
Hope it helps.Please mark me brainliest.^-^
The number of protons cause the element in the periodic table of elements to change.