<u>Answer:</u> When the enthalpy of this overall chemical equation is calculated, the enthalpy of the second intermediate equation is halved and has its sign changed.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The overall chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)
(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[1\times (\Delta H_1)]+[\frac{1}{2}\times (-\Delta H_2)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B1%5Ctimes%20%28%5CDelta%20H_1%29%5D%2B%5B%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%28-%5CDelta%20H_2%29%5D)
Hence, when the enthalpy of this overall chemical equation is calculated, the enthalpy of the second intermediate equation is halved and has its sign changed.
Answer:
oxide of potassium or potassium oxide i believe.
We need to keep in mind that the compound is neutral.
H2SO3
2(+1)+S+3(-2)=0 (since its neutral)
2+S-6=0
S-4=0
S=4
Therefore the oxidation number for sulfur is +4.
Answer: obey the "law of conservation of mass".
_____________________________________
Answer:
the range should be 2.2 to 4.3
Explanation:
I think so because the numbers at the left side of the scale from 1 are more acidic so as it increases it's still acidic but lesser so 1 is more acidic than 2 so I used 2.2 as the beginning of the range because it's less acidic than A even though its a greater number and 4.3 is lesser than 4.4 but its still greater on the scale. frankly speaking I don't feel so correct because it's in decimal so try and compare facts thank you