Answer:
an electron in the outer energy level of an atom
Answer:
Explanation:
Mass of compound A = 25g
Mass of compound B = 40g
Mass of final mixture = 55g
What happens to the missing mass?
According to the law of conservation of mass, in chemical reaction, matter is transformed from one form to another but cannot be created nor destroyed.
We expect the final mass of the mixture and that of the reacting compounds to be the same but the opposite is the case.
There is a mass loss which typifies most chemical reaction.
The reason for this is that some of the masses must have been lost by the production of gaseous species which are unaccounted for.
The missing mass:
Total mass expected = mass of A + mass of B = 25 + 40 = 65g
Missing mass = expected mass - mass of final mixture = 65 - 55 = 10g
Answer:
a) Unsaturated
b) Supersaturated
c) Unsaturated
Explanation:
A saturated solution contains the <u>maximum amount of a solute that will dissolve in a given solvent at a specific temperature</u>.
An unsaturated solution contains <u>less solute than it has the capacity to dissolve. </u>
A supersaturated solution, <u>contains more solute than is present in a saturated solution</u>. Supersaturated solutions are not very stable. In time, some of the solute will come out of a supersaturated solution as crystals.
According to these definitions and considering that the solubility of KCl in 100 mL of H₂O at <u>20 °C is 34 g</u>, and at <u>50 °C is 43 g</u> we can label the solutions:
a) 30 g in 100 mL of H₂O at 20 °C ⇒ unsaturated
b) 65 g in 100 mL of H₂O at 50 °C ⇒ supersaturated
c) 42 g in 100 mL of H₂O at 50 °C and slowly cooling to 20 °C to give a clear solution <u>with no precipitate</u> ⇒ unsaturated (if it were saturated it would have had precipitate)
1. Density=mass/volume=2kg/6m=0.33kg/m (convert to proper units)
2. Density=mass/volume=0.6kg/3L=0.2kg/L (convert to proper units)
3. Density=mass/volume= 129g / 30 cm (convert to proper units)
V=length*width*height=2*3*5 = 30
4. Volume (units) = cm^3 because, like in problem 3, Volume=width(cm)*length(cm)*height(cm)
However, when you pour liquid into a cylinder (so the volume would be the liquid), you measure it in mL.
5. Volume with rock - initial volume (without the rock) = Volume of rock
18.2-12.7= 5.5