Answer:
Metal has an high capacity, which allows it to heat up faster and transfer the heat to the contents of the pot or pan.
Explanation:
Because metal pots are made from a narrow range of metals because pots and pans need to conduct heat well.
Answer:
It is composed of protons, which have a positive charge, and neutrons, which have no charge. Protons, neutrons, and the electrons surrounding them are long-lived particles present in all ordinary, naturally occurring atoms. Other subatomic particles may be found in association with these three types of particles.
Explanation:
Atoms consist of three basic particles: protons, electrons, and neutrons. The nucleus (center) of the atom contains the protons (positively charged) and the neutrons (no charge). The outermost regions of the atom are called electron shells and contain the electrons (negatively charged).
i. The dissolution of PbSO₄ in water entails its ionizing into its constituent ions:

---
ii. Given the dissolution of some substance
,
the Ksp, or the solubility product constant, of the preceding equation takes the general form
.
The concentrations of pure solids (like substance A) and liquids are excluded from the equilibrium expression.
So, given our dissociation equation in question i., our Ksp expression would be written as:
.
---
iii. Presumably, what we're being asked for here is the <em>molar </em>solubility of PbSO4 (at the standard 25 °C, as Ksp is temperature dependent). We have all the information needed to calculate the molar solubility. Since the Ksp tells us the ratio of equilibrium concentrations of PbSO4 in solution, we can consider either [Pb2+] or [SO4^2-] as equivalent to our molar solubility (since the concentration of either ion is the extent to which solid PbSO4 will dissociate or dissolve in water).
We know that Ksp = [Pb2+][SO4^2-], and we are given the value of the Ksp of for PbSO4 as 1.3 × 10⁻⁸. Since the molar ratio between the two ions are the same, we can use an equivalent variable to represent both:

So, the molar solubility of PbSO4 is 1.1 × 10⁻⁴ mol/L. The answer is given to two significant figures since the Ksp is given to two significant figures.
Most metamorphic processes takes place few kilometers below the Earth's surface. Thus, "metamorphic rocks" are formed under conditions found few kilometers under the Earth's surface.
Sedimentary rocks are formed by the compaction of sediments. Two main groups of sedimentary rocks are clastic sedimentary rocks and chemical sedimentary rocks.
Metamorphism refers to the changes in the mineral composition of the rocks. The three agents of metamorphism are heat, pressure and water.
The conversion of one form of rock to another is referred as rock cycle. In a rock cycle, an igneous rock formed from the deposition of molten magma can get converted into sedimentary rock when igneous rock breaks down into pieces and sediments. Finally, the any sedimentary rock or igneous rock can undergo metamorphosis to form metamorphic rocks. Metamorphic rock can again form igneous rock by melting of magma followed by crystallization.