Answer:
8.1 x 10^13 electrons passed through the accelerator over 1.8 hours.
Explanation:
The total charge accumulated in 1.8 hours will be:
Total Charge = I x t = (-2.0 nC/s)(1.8 hrs)(3600 s/ 1 hr)
Total Charge = - 12960 nC = - 12.96 x 10^(-6) C
Since, the charge on one electron is e = - 1.6 x 10^(-19) C
Therefore, no. of electrons will be:
No. of electrons = Total Charge/Charge on one electron
No. of electrons = [- 12.96 x 10^(-6) C]/[- 1.6 x 10^(-19) C]
<u>No. of electrons = 8.1 x 10^13 electrons</u>
Good afternoon!
We calculate the volume of the container in cm³. To do that, we must put the units in cm:
30 cm → 30 cm
50 mm → 5 cm
0.2 m → 20 cm
The volume is:
V = 30 . 5 . 20
V = 3000 cm³
Now, we calculate the mas with the formula:
m = dV
m = 2.5 · 3000
m = 7500 g
Dividing by 1000, we have the mass in kg:
m = 7.5 kg
Answer:
The answer to the question is as follows
The acceleration due to gravity for low for orbit is 9.231 m/s²
Explanation:
The gravitational force is given as

Where
= Gravitational force
G = Gravitational constant = 6.67×10⁻¹¹
m₁ = mEarth = mass of Earth = 6×10²⁴ kg
m₂ = The other mass which is acted upon by
and = 1 kg
rEarth = The distance between the two masses = 6.40 x 10⁶ m
therefore at a height of 400 km above the erth we have
r = 400 + rEarth = 400 + 6.40 x 10⁶ m = 6.80 x 10⁶ m
and
=
= 9.231 N
Therefore the acceleration due to gravity =
/mass
9.231/1 or 9.231 m/s²
Therefore the acceleration due to gravity at 400 kn above the Earth's surface is 9.231 m/s²
Explanation:
S =ut + 1/2at^2
S = 0×6.5 + (1/2 × 9.54) × 6.5^2
S =0 + 4.77 ×42.25
S=201.5m