Answer:
The answer is D. density.
Answer:
with teamwork
Explanation:
you need to use team work so the right answer is C
The current is defined as the amount of charge Q that passes through a given point of a wire in a time

:

Since I=500 A and the time interval is

the charge is

One electron has a charge of

, therefore the number of electrons that pass a point in the wire during 4 minutes is

electrons
Complete Question
The complete question is shown on the first uploaded image
Answer:
The maximum emf is 
The emf induced at t = 1.00 s is 
The maximum rate of change of magnetic flux is 
Explanation:
From the question we are told that
The number of turns is N = 44 turns
The length of the coil is 
The width of the coil is 
The magnetic field is 
The angular speed is 
Generally the induced emf is mathematically represented as

Where
is the maximum induced emf and this is mathematically represented as

Where
is the magnetic flux
N is the number of turns
A is the area of the coil which is mathematically evaluated as

Substituting values


substituting values into the equation for maximum induced emf


given that the time t = 1.0sec
substituting values into the equation for induced emf 


The maximum induced emf can also be represented mathematically as

Where
is the magnetic flux and
is the maximum rate at which magnetic flux changes the value of the maximum rate of change of magnetic flux is

First, balance the reaction:
_ KClO₃ ==> _ KCl + _ O₂
As is, there are 3 O's on the left and 2 O's on the right, so there needs to be a 2:3 ratio of KClO₃ to O₂. Then there are 2 K's and 2 Cl's among the reactants, so we have a 1:1 ratio of KClO₃ to KCl :
2 KClO₃ ==> 2 KCl + 3 O₂
Since we start with a known quantity of O₂, let's divide each coefficient by 3.
2/3 KClO₃ ==> 2/3 KCl + O₂
Next, look up the molar masses of each element involved:
• K: 39.0983 g/mol
• Cl: 35.453 g/mol
• O: 15.999 g/mol
Convert 10 g of O₂ to moles:
(10 g) / (31.998 g/mol) ≈ 0.31252 mol
The balanced reaction shows that we need 2/3 mol KClO₃ for every mole of O₂. So to produce 10 g of O₂, we need
(2/3 (mol KClO₃)/(mol O₂)) × (0.31252 mol O₂) ≈ 0.20835 mol KClO₃
KClO₃ has a total molar mass of about 122.549 g/mol. Then the reaction requires a mass of
(0.20835 mol) × (122.549 g/mol) ≈ 25.532 g
of KClO₃.