Answer: 4 ft/s
Explanation:
Given
height of man
speed of person 
height if street light
Let x be the distance between person and street light and y be the length of his shadow
From diagram
as the two triangle ADE and ABC are similar therefore we can say that




differentiate above Equation w.r.t time we get


FOUR USES OF CONCAVE MIRROR:Satellite dishes,headlights of a car, telescopes used for astronomical studies, and shaving mirrors because of there curved and reflective surface.
FIVE USES OF LENSES: Camera lens ,microscopes ,magnifying glass,eyeglasses,projector
1) The mass of the continent is 
2) The kinetic energy of the continent is 274.8 J
3) The speed of the jogger must be 2.76 m/s
Explanation:
1)
The continent is a slab of side 5900 km (so the surface is 5900 x 5900, assuming it is a square) and depth 26 km, therefore its volume is:

The mass of the continent is given by

where:
is its density
is its volume
Substituting, we find the mass:

2)
To find the kinetic energy, we need to convert the speed of the continent into m/s first.
The speed is
v = 1.6 cm/year
And we have:
1.6 cm = 0.016 m

So, the speed is

Now we can find the kinetic energy of the continent, which is given by

where
is the mass
is the speed
Substituting,

3)
The jogger in this part has the same kinetic energy of the continent, so
K = 274.8 J
And its mass is
m = 72 kg
We can write his kinetic energy as

where
v is the speed of the man
And solving the equation for v, we find his speed:

Learn more about kinetic energy:
brainly.com/question/6536722
#LearnwithBrainly
Answer:
The water level rises more when the cube is located above the raft before submerging.
Explanation:
These kinds of problems are based on the principle of Archimedes, who says that by immersing a body in a volume of water, the initial water level will be increased, raising the water level. That is, the height in the container with water will rise in level. The difference between the new volume and the initial volume of the water will be the volume of the submerged body.
Now we have two moments when the steel cube is held by the raft and when it is at the bottom of the pool.
When the cube is at the bottom of the water we know that the volume will increase, and we can calculate this volume using the volume of the cube.
Vc = 0.45*0.45*0.45 = 0.0911 [m^3]
Now when a body floats it is because a balance is established in the densities, the density of the body and the density of the water.
![Ro_{H2O}=R_{c+r}\\where:\\Ro_{H2O}= water density = 1000 [kg/m^3]\\Ro_{c+r}= combined density cube + raft [kg/m^3]](https://tex.z-dn.net/?f=Ro_%7BH2O%7D%3DR_%7Bc%2Br%7D%5C%5Cwhere%3A%5C%5CRo_%7BH2O%7D%3D%20water%20density%20%3D%201000%20%5Bkg%2Fm%5E3%5D%5C%5CRo_%7Bc%2Br%7D%3D%20combined%20density%20cube%20%2B%20raft%20%5Bkg%2Fm%5E3%5D)
Density is given by:
Ro = m/V
where:
m= mass [kg]
V = volume [m^3]
The buoyancy force can be calculated using the following equation:
![F_{B}=W=Ro_{H20}*g*Vs\\W = (200+730)*9.81\\W=9123.3[N]\\\\9123=1000*9.81*Vs\\Vs = 0.93 [m^3]](https://tex.z-dn.net/?f=F_%7BB%7D%3DW%3DRo_%7BH20%7D%2Ag%2AVs%5C%5CW%20%3D%20%28200%2B730%29%2A9.81%5C%5CW%3D9123.3%5BN%5D%5C%5C%5C%5C9123%3D1000%2A9.81%2AVs%5C%5CVs%20%3D%200.93%20%5Bm%5E3%5D)
Vs > Vc, What it means is that the combined volume of the raft and the cube is greater than that of the cube at the bottom of the pool. Therefore the water level rises more when the cube is located above the raft before submerging.
The correct answer is the third, It reflects the green light waves and absorbs most of the rest.