<h3>
Answer:</h3>
49 N
<h3>
Explanation:</h3>
<u>We are given;</u>
- Mass of the brick as 3 kg
- The coefficient of friction as 0.6
We are required to determine the force that must be applied by the woman so the brick does not fall.
- We need to importantly note that;
- For the brick not to fall the, the force due to gravity is equal to the friction force acting on the brick.
- That is; Friction force = Mg
But; Friction force = μ F
Therefore;
μ F = mg
0.6 F = 3 × 9.8
0.6 F = 29.4
F = 49 N
Therefore, she must use a force of 49 N
Answer:
3.0M
Explanation:
Thats two wavelengths,not one.
Pretty honest mistake I would've made the same if I was rushing
Answer:
Distance covered is equal to all the distance traveled.
So for example, if you go from A to B, and then from B to C, the total distance covered is AB + BC.
Displacement is equal to the difference between the final position and the initial position.
So if we go from A to B, the displacement is simply the line AB.
While if we go from A to B, and then from B to C, the displacement will be a segment that directly connects A and C, such that:
displacement = √( (AB)^2 + (BC)^2)
Now, if we want to find the points such that the magnitude of the distance covered is equal to the magnitude of the displacement, we need to look at the pairs that are directly connected by a straight line.
Those are:
A to B ( or B to A)
B to C (or C to B)
C to D (or D to C)
The positive charge is strongest in the middle, because that is were the charges are going off from.