1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grigory [225]
3 years ago
10

I need the answer to number #23 please will give BRAINLIEST

Physics
1 answer:
Murrr4er [49]3 years ago
3 0
Yeah lowkey i think it’s B
You might be interested in
A car driver traveling at a speed of 108km per hour ,sees a traffic light and stopped after travelling for 20seconds .Find the a
navik [9.2K]

Answer:

– 2.5 m/s²

Explanation:

We have,

• Initial velocity, u = 180 km/h = 50 m/s

• Final velocity, v = 0 m/s (it stops)

• Time taken, t = 20 seconds

We have to find acceleration, a.

\longrightarrow a = (v ― u)/t

\longrightarrow a = (0 – 50)/20 m/s²

\longrightarrow a = –50/20 m/s²

\longrightarrow a = – 5/2 m/s²

\longrightarrow a = – 2.5 m/s² (Velocity is decreasing) [Answer]

6 0
3 years ago
NASA has asked your team of rocket scientists about the feasibility of a new satellite launcher that will save rocket fuel. NASA
kkurt [141]

Answer:

The answer is "q=0.0945\,C".

Explanation:

Its minimum velocity energy is provided whenever the satellite(charge 4 q) becomes 15 m far below the square center generated by the electrode (charge q).

U_i=\frac{1}{4\pi\epsilon_0} \times \frac{4\times4q^2}{\sqrt{(15)^2+(5/\sqrt2)^2}}

It's ultimate energy capacity whenever the satellite is now in the middle of the electric squares:

U_f=\frac{1}{4\pi\epsilon_0}\ \times \frac{4\times4q^2}{( \frac{5}{\sqrt{2}})}

Potential energy shifts:

= U_f -U_i \\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{\sqrt{(15)^2+( \frac{5}{\sqrt{2})^2)}}\right ) \\\\   =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{ 15 +( \frac{5}{2})}}\right )\\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{ (\frac{30+5}{2})}}\right )\\\\

=\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{ (\frac{35}{2})}}\right )\\\\=\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{17.5}}\right )\\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{ 24.74- 5 }{87.5}}\right )\\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{ 19.74- 5 }{87.5}}\right )\\\\ =\frac{4q^2}{\pi\epsilon_0}\left ( 0.2256 }\right )\\\\= \frac{0.28 \times q^2}{ \epsilon_0}\\\\=q^2\times31.35 \times10^9\,J

Now that's the energy necessary to lift a satellite of 100 kg to 300 km across the surface of the earth.

=\frac{GMm}{R}-\frac{GMm}{R+h} \\\\=(6.67\times10^{-11}\times6.0\times10^{24}\times100)\left(\frac{1}{6400\times1000}-\frac{1}{6700\times1000} \right ) \\\\ =(6.67\times10^{-11}\times6.0\times10^{26})\left(\frac{1}{64\times10^{5}}-\frac{1}{67\times10^{5}} \right ) \\\\=(6.67\times6.0\times10^{15})\left(\frac{67 \times 10^{5} - 64 \times 10^{5}  }{ 4,228 \times10^{5}} \right ) \\\\

=( 40.02\times10^{15})\left(\frac{3 \times 10^{5}}{ 4,228 \times10^{5}} \right ) \\\\ =40.02 \times10^{15} \times 0.0007 \\\\

\\\\ =0.02799\times10^{10}\,J \\\\= q^2\times31.35\times10^{9} \\\\ =0.02799\times10^{10} \\\\q=0.0945\,C

This satellite is transmitted by it system at a height of 300 km and not in orbit, any other mechanism is required to bring the satellite into space.

6 0
3 years ago
List two industrial uses for nonmetallic mineral resources
Anni [7]

Answer:

To make useful chemicals and abrasives

Explanation:

4 0
3 years ago
Your mass in kilograms if you weight 170 pounds
Aleonysh [2.5K]
1 pound ≈ 0.4536 kg

170 pounds ≈ 170 * 0.4536 kg

                     ≈ 77.112 kg

                      
5 0
3 years ago
When a voltage difference is applied to a piece of metal wire, a 5.0 mA current flows through it. If this metal wire is now repl
zheka24 [161]

Answer:

I = 21.13 mA ≈ 21 mA

Explanation:

If

I₁ = 5 mA

L₁ = L₂ = L

V₁ = V₂ = V

ρ₁ = 1.68*10⁻⁸ Ohm-m

ρ₂ = 1.59*10⁻⁸ Ohm-m

D₁ = D

D₂ = 2D

S₁ = 0.25*π*D²

S₂ = 0.25*π*(2*D)² = π*D²

If we apply the equation

R = ρ*L / S

where (using Ohm's Law):

R = V / I

we have

V / I = ρ*L / S

If V and L are the same

V / L =  ρ*I / S

then

(V / L)₁ = (V / L)₂  ⇒     ρ₁*I₁ / S₁ = ρ₂*I₂ / S₂

If

S₁ = 0.25*π*D²   and

S₂ = 0.25*π*(2*D)² = π*D²

we have

ρ₁*I₁ / (0.25*π*D²) = ρ₂*I₂ / (π*D²)

⇒    I₂ = 4*ρ₁*I₁ / ρ₂

⇒     I₂ = 4*1.68*10⁻⁸ Ohm-m*5 mA / 1.59*10⁻⁸ Ohm-m

⇒     I₂ = 21.13 mA

5 0
3 years ago
Other questions:
  • Suppose that the resistance between the walls of a biological cell is 6.8 × 109 ω. (a) what is the current when the potential di
    7·1 answer
  • Calculate the hydrostatic difference in blood pressure between the brain and the foot in a person of height 1.93 m. The density
    10·1 answer
  • How many nanoseconds are there in 1.90 yr ?<br> Express your answer using three significant figures.
    5·1 answer
  • Which human body system provides nutrients for the body by breaking<br> down food? *
    12·1 answer
  • What is the most common feature on the far side of the Moon?
    8·2 answers
  • To calculate the heat needed to boil a pot of water at 100C, what do you need to know? A. the mass and latent heat of fusion B.
    9·2 answers
  • Please tell me the order the answers go. Best and most correct answer gets Brainliest.
    11·1 answer
  • A car starting from rest accelerates in a straight line at a constant rate of 5.5m/s for 6s.If the car after this acceleration s
    11·1 answer
  • What is the minimum force require to move a 5kg wooden crate on a wooden floor?
    11·1 answer
  • Do energy drinks actually provide energy?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!