Complete Question
Consider a system consisting of an ideal gas confined within a container, one wall of which is a movable piston. Energy can be added to the gas in the form of heat by applying a flame to the outside of the container. Conversely, energy can also be removed from the gas in the form of heat by immersing the container in ice water. Energy can be added to the system in the form of work by pushing the piston in, thereby compressing the gas. Conversely, if the gas pushes the piston out, thereby pushing some atmosphere aside, the internal energy of the gas is reduced by the amount of work done.

so the absolute temperature T is directly proportional to the product of the absolute pressure p and the volume V,Here n denotes the amount of gas moles,which is a constant because the gas is confined and R is the universal constant
What is the
as the system of ideal gas goes from point A to point B on the graph recall u is proportional to T
Answer:


The gas A and B have same internal energy
Explanation:
From the question we are told that

Generally the equation of temperature is mathematically given as


And


Generally the change in temperature
is mathematically given as


Generally the change in internal energy 


Therefore with


The gas A and B have same internal energy
Answer:
La frecuencia será la misma en los dos medios, y en el vacio, no varia.
b) Vacío : n = 3,684 10 m 1,33 = 4 900 Å ,3161 10 m 55,1 n
,6 105 10 Hz
3,161 10 m
v 1,93 10 m/s 193548,38 km/s =
1,55
10 3 m/s
n
c
Vidrio v: =
,6 107 10 Hz
3,684 10 m
v 2,25 10 m/s 225 000km/s =
33,1
10 3 m/s
n
c
a
The movement of a fluid during convection is a circular/oval motion since the fluid at the top sinks and the fluid at the bottom rises.
Hope this helps :)
Answer:
(from top to bottom)
350 N, 80 kg, 10 m/s^2, 80 kg, -15 m/s^2, -3000 N
Explanation:
Force = Mass*Acceleration (aka F = ma)
Using algebra, you can find the variables/unknown values.
Answer: The passage of a light wave can cause electrically charged particles to move up and down.
Explanation:
Electromagnetic waves are transversal waves, they are a combination of oscillating electric and magnetic fields, which propagate through space carrying energy from one place to another.
This means the oscillation of the wave occurs in the transversal direction to its propagation. In addition, electromagnetic waves are spread thanks to the electromagnetic fields produced by moving electric charges.