Explanation:
The object is moving along the parabola y = x² and is at the point (√2, 2). Because the object is changing directions, it has a centripetal acceleration towards the center of the circle of curvature.
First, we need to find the radius of curvature. This is given by the equation:
R = [1 + (y')²]^(³/₂) / |y"|
y' = 2x and y" = 2:
R = [1 + (2x)²]^(³/₂) / |2|
R = (1 + 4x²)^(³/₂) / 2
At x = √2:
R = (1 + 4(√2)²)^(³/₂) / 2
R = (9)^(³/₂) / 2
R = 27 / 2
R = 13.5
So the centripetal force is:
F = m v² / r
F = m (5)² / 13.5
F = 1.85 m
Answer:
V₀ = 5.47 m/s
Explanation:
The jumping motion of the Salmon can be modelled as the projectile motion. So, we use the formula for the range of projectile motion here:
R = V₀² Sin 2θ/g
where,
R = Range of Projectile = 3.04 m
θ = Launch Angle = 41.7°
V₀ = Minimum Launch Speed = ?
g = 9.81 m/s²
Therefore,
3.04 m = V₀² [Sin2(41.7°)]/(9.81 m/s²)
V₀² = 3.04 m/(0.10126 s²/m)
V₀ = √30.02 m²/s²
<u>V₀ = 5.47 m/s</u>
Answer:
The value is
Explanation:
From the question we are told that
The power output from the sun is
The average wavelength of each photon is
Generally the energy of each photon emitted is mathematically represented as
Here h is the Plank's constant with value
c is the speed of light with value
So
=>
Generally the number of photons emitted by the Sun in a second is mathematically represented as
=>
=>
Answer:
The magnitude is:
The direction of E is in the negative x-direction.
Explanation:
The electric field equation is:
Where:
- Q is the charge (we can choose the electron or the proton)
- r is the distance (in our case is at the midpoint 973/2 nm)
- k is the Coulomb constant ()
Using the electron charge ()
The magnitude is:
The direction of E is in the negative x-direction.
I hope it helps you!