Answer:
Explanation:
Ionization Energy Trends
Ionization energy is the energy required to remove an electron from a neutral atom in its gaseous phase. Conceptually, ionization energy is the opposite of electronegativity. ... As a result, it is easier for valence shell electrons to ionize, and thus the ionization energy decreases down a group
Deffinitly oxygen cause everyone breathes and yah.
Answer:
cm
Explanation:
= separation between the slits = 2783 x 10⁻⁹ m
= wavelength of coherent light = 644 nm = 644 x 10⁻⁹ m
= Distance of the screen = 6 cm = 0.06 m
= Position of nth bright fringe
Position of nth bright fringe is given as
for n = 2

m
for n = 4

m
Distance between 4th and 2nd bright fringes is given as

cm
The noble gases have eight valence electrons and as a result are stable.
If an atom consists of 8 valence electrons, they have a full octet, and do not need to bond, which makes them "happy".
Answer:
The cannon ball was not able to hit the target because the target is located at a height of 50 m whereas the cannon ball was only above to get to a height of 20 m.
Explanation:
From the question given above, the following data were obtained:
Height to which the target is located = 50 m
Initial velocity (u) = 20 m/s
To know whether or not the cannon ball is able to hit the target, we shall determine the maximum height to which the cannon ball attained. This can be obtained as follow:
Initial velocity (u) = 20 m/s
Final velocity (v) = 0 (at maximum height)
Acceleration due to gravity (g) = 10 m/s²
Maximum height (h) =?
v² = u² – 2gh (since the ball is going against gravity)
0² = 20² – (2 × 10 × h)
0 = 400 – 20h
Collect like terms
0 – 400 = – 20h
– 400 = – 20h
Divide both side by – 20
h = – 400 / – 20
h = 20 m
Thus, the the maximum height to which the cannon ball attained is 20 m.
From the calculations made above, we can conclude that the cannon ball was not able to hit the target because the target is located at a height of 50 m whereas the cannon ball was only above to get to a height of 20 m.