Answer:
(a) The self inductance, L = 21.95 mH
(b) The energy stored, E = 4.84 J
(c) the time, t = 0.154 s
Explanation:
(a) Self inductance is calculated as;

where;
N is the number of turns = 1000 loops
μ is the permeability of free space = 4π x 10⁻⁷ H/m
l is the length of the inductor, = 45 cm = 0.45 m
A is the area of the inductor (given diameter = 10 cm = 0.1 m)

(b) The energy stored in the inductor when 21 A current ;

(c) time it can be turned off if the induced emf cannot exceed 3.0 V;

Answer:
below
Explanation: When a liquid changes into a gas vaporization has occurred. The process can either occur due to boiling or evaporation. Boiling occurs when the vapor pressure of the liquid is raised (by heating) to the point where it is equal to the atmospheric pressure.
Answer:
there is friction between the two things
Explanation:
Answer:
NO
Explanation:
No, a machine cannot be 100% efficient. This is due to the movement of the moving parts siding against each other and causing friction. This friction is the one that creates heat and causes wear and tear between moving ports f the machine hence making the machine to decrease in efficiency with time
Energy is released in the reaction
Explanation:
In a given where the energy of the products is greater than that of the reactants, we can infer that energy is released in the reaction.
This indicates that the reaction is an exothermic or exergonic reaction.
These reaction types are accompanied by release of energy.
- In an exothermic change energy is released to the surroundings.
- The surrounding becomes hotter at the end of the change.
- This applies in exergonic reaction which leaves a reaction having more energy than it originally started with.
Learn more:
Exothermic process brainly.com/question/10567109
#learnwithBrainly