1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sesenic [268]
3 years ago
14

Once the crate in sample problem 4C is in motion, a horizontal force of 53 N keeps the crate moving with a constant velocity. Fi

nd ตk, the coefficient of kinetic friction, between the crate and the floor.
Physics
2 answers:
liraira [26]3 years ago
5 0

Answer: k = 5.4kg/m

where m is the mass of the crate.

Explanation:

The force of kinetic friction is described by the equation:

Ff = k*N

in the opposite direction in wich the object moves, where k is the coefficient of kinetic friction and N is the normal force, that is equal to the weight of the crate. N = m*g where m is the mass of the crate and g is the gravitational acceleration.

If the crate keeps moving with constant velocity, this means that the crate is not accelerating so there is no net force applied on the crate. Then the friction force should be equal in magnitude to the horizontal force of 53N (but with different sign)

then we have:

k*m*g =  53N

k*m = 53N/9.8m/s^2 = 5.4kg

k = 5.4kg/m

In the question we do not have the mass of the crate, so you must put the value in that equation to get the value of k.

GalinKa [24]3 years ago
4 0

Answer:

Explanation:

Given:

Force required at constant velocity, Fk = 53 N

Force required at rest, Fs = 53 N

Mass, M = 24 kg

Total force, Ft = 0

Fs - Fn = 0

Fk - Fn = 0

Where,

Fn = normal force

= Mass × g × µ

Fs = Mass × g × µs

Fk = Mass × g × µk

Where,

µs = coefficient of static friction

µk = coefficient of kinetic friction

Fk = Mass × g × µk

µk = 53/(24 × 9.8)

= 0.225

= 0.23.

You might be interested in
monochromatic light from a distant source is incident on a slit 0.75 mm wide. on screen 2 m away, the distance from the central
hjlf

Displacement from the center line for minimum intensity is 1.35 mm , width of the slit  is 0.75 so  Wavelength of the light  is 506.25.

<h3>How to find Wavelength of the light?</h3>

When a wave is bent by an obstruction whose dimensions are similar to the wavelength, diffraction is observed. We can disregard the effects of extremes because the Fraunhofer diffraction is the most straightforward scenario and the obstacle is a long, narrow slit.

This is a straightforward situation in which we can apply the

Fraunhofer single slit diffraction equation:

y = mλD/a

Where:

y = Displacement from the center line for minimum intensity =  1.35 mm

λ =  wavelength of the light.

D = distance

a = width of the slit = 0.75

m = order number = 1

Solving for λ

λ = y + a/ mD

Changing the information that the issue has provided:

λ = 1.35 * 10^-3 + 0.75 * 10^-3 / 1*2  

=5.0625 *10^-7 = 506.25

so

Wavelength of the light 506.25.

To learn more about Wavelength of the light refer to:

brainly.com/question/15413360

#SPJ4

5 0
1 year ago
Electromotive force in a circuit;
tester [92]

Answer:

A causes free electrons to flow

Explanation:

The amount of force that causes electrons to flow in a conductor is called electromotive force.

8 0
2 years ago
What is the approximate wavelength of a light whose first-order bright band forms a diffraction angle of 45.0° when it passes
sp2606 [1]
** Missing info: Lines per mm = 500 **

Ans: The wavelength is =  λ = 1414.21 nm

Explanation:
The formula for diffraction grading is:

dsinθ = mλ --- (1)

Where
d = 1/lines-per-meter = (1/500)*10^-3 = 2 * 10^-6
m = order = 1
λ = wavelength
θ = 45°

Plug in the values in (1):
(1) => 2*10^-6*sin(45°) = (1)λ
=> λ = 1414.21 nm
7 0
3 years ago
The maximum height a typical person can jump is about 60cm (0.6m). By how much does the gravitational potential energy increase
sasho [114]

The gravitational potential energy will increase by 423.36 J

<h3>How to determine the potential energy at ground level</h3>
  • Mass (m) = 72 kg
  • Acceleration due to gravity (g) = 9.8 m/s²
  • Height (h) = 0 m
  • Potential energy at ground level (PE₁) =?

PE = mgh

PE₁ = 72 × 9.8 × 0

PE₁ = 0 J

<h3>How to determine the potential energy at 60 cm (0.6 m)</h3>
  • Mass (m) = 72 kg
  • Acceleration due to gravity (g) = 9.8 m/s²
  • Height (h) = 0.6 m
  • Potential energy at 60 cm (0.6 m) (PE₂) =?

PE = mgh

PE₂ = 72 × 9.8 × 0.6

PE₂= 423.36 J

<h3>How to determine the change in potential energy </h3>
  • Potential energy at ground level (PE₁) = 0 J
  • Potential energy at 60 cm (0.6 m) (PE₂) = 423.36 J
  • Change in potential energy =?

Change in potential energy = PE₂ - PE₁

Change in potential energy = 423.36 - 0

Change in potential energy = 423.36 J

Learn more about energy:

brainly.com/question/10703928

#SPJ1

8 0
1 year ago
A 50.0 Watt stereo emits sound waves isotropically at a wavelength of 0.700 meters. This stereo is stationary, but a person in a
photoshop1234 [79]

Answer:

a) f' = 432 Hz

b) I = 8.12*10^-4 W/m^2

Explanation:

a) To calculate the frequency of sound waves that car receives, you take into account the Doppler effect. In this case (observer moves away of the source) you have the following formula:

f'=f(\frac{v-v_o}{v+v_s})    (1)

where

f: frequency of the source = ?

v: speed of sound = 343 m/s

vo: speed of the observer = 40.0 m/s

vs: speed of the source = 0 m/s (stationary)

You replace the values of all parameters in the equation (1):

To calculate f' you first calculate the frequency of the sound wave, by using the following formula:

v=\lambda f\\\\

v: speed of sound

λ: wavelength = 0.700 m

f=\frac{v}{\lambda}=\frac{343m/s}{0.700m}=480Hz

Next, you replace the values of all parameters in the equation (1):

f'=(490Hz)(\frac{343m/s-40.0m/s}{343m/s})=432Hz

hence, the frequency perceived by the car is 432 Hz

b) To calculate the power of the sound wave, when the car is 70.0 maway from the speaker, you use the following formula:

I=\frac{P}{4\pi r^2}

P: power of the source = 50.0 W

r: distance to the source = 70.0 m

I=\frac{50.0 W}{4\pi(70.0m)^2}=8.12*10^{-4}\frac{W}{m^2}

hence, the intensity is 8.12*10^⁻4 W/m^2

3 0
3 years ago
Other questions:
  • A ray of light strikes a smooth surface and is reflected. The angle of incidence is 35°. What can be predicted about the angle o
    14·2 answers
  • The atmosphere is composed of five?
    15·2 answers
  • A simple pendulum 0.64m long has a period of 1.2seconds. Calculate the period of a similar pendulum 0.36m long in the same locat
    8·1 answer
  • Steven buys a pair of scissors instead of getting a haircut. He belives the scissors will last for a long time, while the haircu
    13·1 answer
  • Very large accelerations can injure the body, especially if they last for a considerable length of time. The severity index (SI)
    5·1 answer
  • Does anyone know 3-6?
    5·2 answers
  • I NEED HELP ASAP WILL MARK BRAINLIEST:
    5·1 answer
  • Can someone please help, ty!!<br> (Will mark brainliest)
    15·1 answer
  • If you break from the speed in part (c) and then start again from rest, how fast will you be able to drive?
    15·1 answer
  • what is our best hypothesis for why all the planets in our solar system orbit in the same direction as the sun rotates?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!