1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sesenic [268]
3 years ago
14

Once the crate in sample problem 4C is in motion, a horizontal force of 53 N keeps the crate moving with a constant velocity. Fi

nd ตk, the coefficient of kinetic friction, between the crate and the floor.
Physics
2 answers:
liraira [26]3 years ago
5 0

Answer: k = 5.4kg/m

where m is the mass of the crate.

Explanation:

The force of kinetic friction is described by the equation:

Ff = k*N

in the opposite direction in wich the object moves, where k is the coefficient of kinetic friction and N is the normal force, that is equal to the weight of the crate. N = m*g where m is the mass of the crate and g is the gravitational acceleration.

If the crate keeps moving with constant velocity, this means that the crate is not accelerating so there is no net force applied on the crate. Then the friction force should be equal in magnitude to the horizontal force of 53N (but with different sign)

then we have:

k*m*g =  53N

k*m = 53N/9.8m/s^2 = 5.4kg

k = 5.4kg/m

In the question we do not have the mass of the crate, so you must put the value in that equation to get the value of k.

GalinKa [24]3 years ago
4 0

Answer:

Explanation:

Given:

Force required at constant velocity, Fk = 53 N

Force required at rest, Fs = 53 N

Mass, M = 24 kg

Total force, Ft = 0

Fs - Fn = 0

Fk - Fn = 0

Where,

Fn = normal force

= Mass × g × µ

Fs = Mass × g × µs

Fk = Mass × g × µk

Where,

µs = coefficient of static friction

µk = coefficient of kinetic friction

Fk = Mass × g × µk

µk = 53/(24 × 9.8)

= 0.225

= 0.23.

You might be interested in
PLEASE HELP!!!!!!! A student is trying to demonstrate static electricity, so they rub two identical balloons with a neutral rabb
vlada-n [284]

I uploaded the answer to a file hosting. Here's link:

tinyurl.com/wpazsebu

4 0
3 years ago
The magnetic field or force seems to be associated with the lineup of____________ within the magnet.
Nastasia [14]
The magnetic field or force seems to be associated with the lineup of electrons withim the magnet
6 0
3 years ago
Read 2 more answers
A very long solid insulating cylinder has radius R = 0.1 m and uniform charge density rho0= 10-3 C/m3. Find the electric field a
Galina-37 [17]

Answer:

E   = (0.56 \times 10^8 ) r   \   \ N/c

Explanation:

Given that:

\rho_o = (10^{-3} ) \ c/m^3

R = (0.1) m

To find  the electric field for r < R by using Gauss Law

{\oint}E^{\to}* da^{\to} = \dfrac{Q_{enclosed}}{\varepsilon_o} --- (1)

For r < R

Q_{enclosed}=(\rho) ( \pi r^2 ) l

E*(2 \pi rl)= \dfrac{\rho ( \pi r ^2 l)}{\varepsilon_o}

E= \dfrac{\rho ( r)}{2 \varepsilon_o}

where;

\varepsilon_o = 8.85 \times 10^{-12}

E= \dfrac{10^{-3} ( r)}{2 (8.85 \times 10^{-12})}

E= \dfrac{10^{-3} ( r)}{2 (8.85 \times 10^{-12})}

E   = (0.56 \times 10^8 ) r   \   \ N/c

4 0
3 years ago
*please refer to photo* An electric field of magnitude 5.25 ✕ 10^5N/C points due south at a certain location. Find the magnitude
kvv77 [185]

Answer:

Approximately 3.86\; {\rm N} (given that the magnitude of this charge is -7.35\; {\rm \mu C}.)

Explanation:

If a charge of magnitude q is placed in an electric field of magnitude E, the magnitude of the electrostatic force on that charge would be F = E\, q.

The magnitude of this charge is q = 7.35\; {\rm \mu C}. Apply the unit conversion 1\; {\rm \mu C} = 10^{-6}\; {\rm C}:

\begin{aligned} q &= 7.35\; {\mu C} \times \frac{10^{-6}\; {\rm C}}{1\; {\mu C}} = 7.35\times 10^{-6}\; {\rm C}\end{aligned}.

An electric field of magnitude E = 5.25\times 10^{5}\; {\rm N \cdot C^{-1}} would exert on this charge a force with a magnitude of:

\begin{aligned}F &= E\, q \\ &= 5.25 \times 10^{5}\; {\rm N \cdot C^{-1}} \times (-7.35\times 10^{-6}\; {\rm C}) \\ &\approx 3.86\; {\rm N}\end{aligned}.

Note that the electric charge in this question is negative. Hence, electrostatic force on this charge would be opposite in direction to the the electric field. Since the electric field points due south, the electrostatic force on this charge would point due north.

4 0
2 years ago
a ball is thrown vertically upward with an initial speed of 40 m/s. how high is the ball above the ground when it stops
NISA [10]

Answer:

80m, assuming g=10m/s^2

Explanation:

40m/s will be reduced to 0m/s in 4 seconds. 4 seconds x 40m/s would be 160m up, but you will only get half of that because you decelerate linearly to 0m/s. This leaves you with 4 x 20 = 80m.

5 0
3 years ago
Read 2 more answers
Other questions:
  • *PLEASE HURRY ITS FOR A QUIZ*
    14·1 answer
  • What type of cloud is commonly seen after a hurricane? explain why
    6·1 answer
  • A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. f(t) = 0.01t4 − 0.0
    8·1 answer
  • Jack (mass 52.0 kg ) is sliding due east with speed 8.00 m/s on the surface of a frozen pond. he collides with jill (mass 49.0 k
    9·1 answer
  • A solenoid that is 66.1 cm long has a cross-sectional area of 13.8 cm2. There are 1410 turns of wire carrying a current of 8.01
    6·1 answer
  • A 1.20-m cylindrical rod of diameter 0.570 cm is connected to a power supply that maintains a constant potential difference of 1
    15·1 answer
  • 9) Cart 1 has a mass of 4 kg and an initial speed of 4 m/s. It eventually elastically collides with cart 2, whose mass is 6 kg,
    9·1 answer
  • 3.A carnival ride has a radius of 5.00 m and exerts an applied force of 987 N on an 80 kg rider.
    7·1 answer
  • Calculate the force on an object with mass of 50kg and gravity of 10​
    7·1 answer
  • 50 POINTS!! BRAINLEST
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!