Answer:
6.88 mA
Explanation:
Given:
Resistance, R = 594 Ω
Capacitance = 1.3 μF
emf, V = 6.53 V
Time, t = 1 time constant
Now,
The initial current, I₀ = 
or
I₀ = 
or
I₀ = 0.0109 A
also,
I = ![I_0[1-e^{-\frac{t}{\tau}}]](https://tex.z-dn.net/?f=I_0%5B1-e%5E%7B-%5Cfrac%7Bt%7D%7B%5Ctau%7D%7D%5D)
here,
τ = time constant
e = 2.717
on substituting the respective values, we get
I = ![0.0109[1-e^{-\frac{\tau}{\tau}}]](https://tex.z-dn.net/?f=0.0109%5B1-e%5E%7B-%5Cfrac%7B%5Ctau%7D%7B%5Ctau%7D%7D%5D)
or
I =
or
I = 0.00688 A
or
I = 6.88 mA
The final temperature of the system is 32.5°
we know, H = mcT
where, H = Heat content of the body
m = Mass,
c = Specific heat
T = Change in temperature
According to to the Principle of Calorimetry
The net heat remains constant i.e.
⇒ the heat given by water = heat accepted by the aluminum container.
⇒ 330 x 1 x (45 - T) = 855 x

x (T - 10)
⇒ 14,850 - 330T = 183.21T - 1832
⇒ - 513.21 T = - 16682
or T = 32.5°
Please find attached photograph for your answer. Do comment if you have any query.. Please do mark me Brainliest if you like my answer