Answer:
145.52137 m/s
1.4 m
0.7 m
60.6339 Hz
121.2678 Hz
Explanation:
T = Tension = 120 N
= Linear density = 
m = Mass of wire = 6.8 g
L = Length of wire = 1.2 m
n = Number of loops
Velocity is given by

The speed of waves on the wire is 145.52137 m/s
Wavelength is given by

The wavelength of the waves that produces one-loop standing waves is 1.4 m

The wavelength of the waves that produces two-loop standing waves is 0.7 m
Frequency is given by

The frequency of the waves that produces one-loop standing waves is 60.6339 Hz

The frequency of the waves that produces two-loop standing waves is 121.2678 Hz
A risk assessment<span> is a process to identify potential hazards and analyze what could happen if a hazard occurs. </span>
Answer:
Explanation:
We put the charges in the ascending order as follows
1.53 P
3.26 P
4.66 P
5.09 P
6.39 P
where P is equal to 10⁻¹⁹
we round off given charges as follows
1.53 P → 1.6 P
3.26 P → 3.2 P
4.66 P → 4.8 P
5.09 P → 4.8 P
6.39 P → 6.4 P
We see that 2 nd to 4 th charges are integral multiples of first charge . That means these charges are supposed to be made of combination of first charge . So first charge appears to be minimum possible charge .
Hence this charge may exist on single electron.
The type of mixture that is formed when a solid is stirred into a liquid and dissolves is called suspension. The particles involved or being mixed in this type of mixture is large enough that can be seen by the naked eye without the aid of any device. A suspension mixture has a heterogeneous mixture.