Answer:
<h2>132 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 66 × 2
We have the final answer as
<h3>132 N</h3>
Hope this helps you
A) experimental because he isn’t sure and is testing out
Answer:
The equivalent stiffness of the string is 8.93 N/m.
Explanation:
Given that,
Spring stiffness is





According to figure,
and
is in series
We need to calculate the equivalent
Using formula for series


Put the value into the formula


k and
is in parallel
We need to calculate the k'
Using formula for parallel

Put the value into the formula


,k' and
is in series
We need to calculate the equivalent stiffness of the spring
Using formula for series

Put the value into the formula


Hence, The equivalent stiffness of the string is 8.93 N/m.
Answer:
coefficient of static friction of the surface and the normal force
Explanation:
The coefficient of static friction of the surface and the normal force exerted on the surface given by equation F = μR
<h2>
The seagull's approximate height above the ground at the time the clam was dropped is 4 m</h2>
Explanation:
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Time, t = 3 s
Substituting
s = ut + 0.5 at²
s = 0 x 3 + 0.5 x 9.81 x 3²
s = 44.145 m
The seagull's approximate height above the ground at the time the clam was dropped is 4 m