When solid material expands in response to an increase in temperature (thermal expansion), it can increase in length in a process known as linear expansion. for an example application of expansion and contraction.
examples =
(1) Changing of shape and dimensions of objects such as doors.
(2) Wall collapsing due to bulging.
(3) Cracking of glass tumbler due to heating.
(4) Bursting of metal pipes carrying hot water or steam are some of the disadvantages of thermal expansion of matter.
Answer:

Explanation:
Given:
- mass of the object,

forces by two mutually perpendicular ropes of the attached to the object:
<u>Now we find the resultant force effect due to the two given forces:</u>



<u>Now the acceleration will be due to this resultant force:</u>



Answer:
m=ρV
V=LxWxD
V=4x10x2=80
m=2*80=160 grams
Explanation:
Mass is equal to density multiply by volume of object. Volume of rectangle pice can be calculated by multiplying all sides.
The change in velocity (v₂ - v₁) is
<em> (-20) / (the object's mass)</em>.
Call it a crazy hunch, but I can't shake the feeling that there was more
to the question before the part you copied, that mentioned the object's
mass, and its velocity before this force came along.
Answer:
The astronaut can throw the hammer in a direction away from the space station. While he is holding the hammer, the total momentum of the astronaut and hammer is 0 kg • m/s. According to the law of conservation of momentum, the total momentum after he throws the hammer must still be 0 kg • m/s. In order for momentum to be conserved, the astronaut will have to move in the opposite direction of the hammer, which will be toward the space station.
Explanation: