1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lostsunrise [7]
2 years ago
14

True or False: The basketball should be dribbled below the waist.

Physics
1 answer:
zimovet [89]2 years ago
7 0
True if you have proper stance and use your body the right way then the ball will be below your waist to allow for more control.
You might be interested in
Differentiate between sound waves and seismic waves?
algol13

The only real difference is that common seismic waves travel through the ground and sound waves travel through the air. If you had a pipe attached to granite and you were listening to it, you might detect both.

7 0
2 years ago
Read 2 more answers
39. A dog runs on a waxed floor at an initial speed of 2 m/s. It slides to a stop with an
Sedbober [7]

Answer:

Explanation:

Use the one-dimensional equation

v_f=v_0+at where vf is the final velocity of the dog, v0 is the initial velocity of the dog, a is the acceleration of the dog, and t is the time it takesto reach that final velocity. For us:

0 = 2 + -.43t and

-2 = -.43t so

t = 4.7 seconds

5 0
3 years ago
An electromagnet is a device in which moving electric charges (current) in a coil of wire create a magnet. What’s one advantage
docker41 [41]
Electromagnets have certain advantages over permanent magnets. One of the major advantage is, the amount of electric current can easily be controlled, in turn, magnetic field can be controlled. Out of all the options, option D would be the best answer.

In short, Your Answer would be option D) Electromagnets can easily be turned on and off.

Hope this helps!
5 0
3 years ago
True.or false A railroad track runs southwest to northeast.
telo118 [61]

Answer:

ns for high-speed rail in the United States date back to the High Speed Ground Transportation Act of 1965. Various state and federal proposals have followed. Despite being one of the world's first countries to get high-speed trains (the Metroliner service in 1969), it failed to spread. Definitions of what constitutes high-speed rail vary, including a range of speeds over 110 mph (180 km/h) and dedicated rail lines. Inter-city railwith top speeds between 90 and 125 mph (140 and 200 km/h) is sometimes referred to in the United States as higher-speed rail.[1]

Amtrak's Acela Express (reaching 150 mph, 240 km/h), Silver Star, Northeast Regional, Keystone Service, Vermonter and certain MARC Penn Line express trains (all five reaching 125 mph, 201 km/h) are the only high-speed services in the country.

As of 2020, the California High-Speed Rail Authority is working on the California High-Speed Rail project and construction is under way on sections traversing the Central Valley. The Central Valley section is planned to open in 2029 and Phase I is planned for completion in 2031.[2]

Contents

1 Definitions in American context

2 History

2.1 Faster inter-city trains: 1920–1941

2.2 Post-war period: 1945–1960

2.3 First attempts: 1960–1992

2.4 Renewed interest: 1993–2008

2.5 Plans for 2008–2013

3 Current state and regional efforts

3.1 The Northeast

3.1.1 Northeast Corridor: Next Generation High-Speed Rail

3.1.1.1 Proposed routes

3.1.2 Northeast Maglev proposal

3.1.3 New Jersey–New York City upgrades

3.1.4 New York

3.1.5 Pennsylvania

3.2 Western States

3.2.1 California

3.2.2 Pacific Northwest

3.2.3 Arizona

3.3 Mid-Atlantic and the South

3.3.1 Florida

3.3.2 Southeast

3.3.3 Texas

3.4 Midwest

3.4.1 Illinois and the Midwest

3.5 The Southwest

4 Federal high-speed rail initiatives

4.1 American Recovery and Reinvestment Act of 2009

4.1.1 Strategic plan

4.2 2009 federal grant funding

4.3 2010 allocation

4.3.1 Cancellation of funds for Wisconsin, Ohio, and Florida

4.4 2011 and 2012 proposals and rejections of funding

5 See also

6 Notes

7 Further reading

8 External links

Explanation:

3 0
3 years ago
A water main pipe of diameter 10 cm enters a house 2 m below ground. A smaller diameter pipe carries water to a faucet 5 m above
Lemur [1.5K]

Explanation:

Given that,

Diameter = 10 cm

Distance = 2 m

Speed v_{1}= 2\ m/s

Speed v_{2}=7\ m/s

Pressure in main pipe P_{1}=2\times10^{5}\ Pa

(I). We need to calculate the diameter

Using equation of continuity

Av_{1}=Av_{2}

\pi(\dfrac{d_{1}}{2})^2\times v_{1}=\pi(\dfrac{d_{2}}{2})^2\times v_{2}

(\dfrac{10}{2})^2\times2=(\dfrac{d_{2}}{2})^2\times7

d_{2}=\sqrt{\dfrac{25\times2\times4}{7}}

d_{2}=5.345\ cm

(II). We need to calculate the pressure the gauge pressure

Using Bernoulli equation

P_{1}+\dfrac{1}{2}\rho v_{1}^2+\rho gh_{1}=P_{2}+\dfrac{1}{2}\rho v_{2}^2+\rho g h_{2}

P_{2}=P_{1}+\dfrac{1}{2}\rho(v_{1}^2-v_{2}^2)-\rho g(h_{1}-h_{2})

P_{2}=2\times10^{5}+\dfrac{1}{2}\times1000(4-49)-1000\times 9.8\times(5)

P_{2}=1.28500\times10^{5}\ Pa

(III).  If it is possible to carry water to a faucet 17 m above ground,

Using Bernoulli equation

P_{1}+\dfrac{1}{2}\rho v_{1}^2+\rho gh=P_{3}+\dfrac{1}{2}\rho v_{3}^2+\rho g h_{3}

P_{3}=P_{1}+\dfrac{1}{2}\rho v_{1}^2-\rho g(h_{1}-h_{3})

Here, h_{3}=0

Put the value in the equation

P_{3}=2\times10^{5}+\dfrac{1}{2}\times1000\times4-1000\times 9.8\times17

P_{3}=3.5400\times10^{5}\ Pa

Hence, This is required solution.

7 0
3 years ago
Other questions:
  • A 2.0 g particle moving at 5.2 m/s makes a perfectly elastic head-on collision with a resting 1.0 g object.
    6·1 answer
  • A thin spherical shell of radius 7.6 cm carries a uniform surface charge density of 6.7 times 10-9 C/m2. The magnitude of the el
    9·1 answer
  • A catapult launches a test rocket vertically upward from a well, giving the rocket an initial speed of 79.6 m/s at ground level.
    11·1 answer
  • Brody, The dog, is sitting at your feet like a good boy. You throw a dog toy away from you at a speed of 34 m/s (assume constant
    6·1 answer
  • The speed of water flowing through the 4in diameter section of the piping system is 3ft/s. What is the volume flow rate of water
    9·1 answer
  • Explain what each quantum number in a quantum number set tells you about the electron. Compare and contrast the locations and pr
    9·1 answer
  • A stretched rubber band is an example of which type potential energy
    9·2 answers
  • There are screws all around you. Name five examples of screws that you see in everyday life? Think broadly!
    6·1 answer
  • If light photons are massless then why are they attracted by black holes?​
    13·1 answer
  • Technical skills: knowledge base of sport rearrange our coaching skills from best (at the top) to worst (at the bottom) by dragg
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!