1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lostsunrise [7]
2 years ago
14

True or False: The basketball should be dribbled below the waist.

Physics
1 answer:
zimovet [89]2 years ago
7 0
True if you have proper stance and use your body the right way then the ball will be below your waist to allow for more control.
You might be interested in
A 50-g cube of ice, initially at 0.0°C, is dropped into 200 g of water in an 80-g aluminum container, both initially at 30°C.
MakcuM [25]

Answer:

b. 9.5°C

Explanation:

m_i = Mass of ice = 50 g

T_i = Initial temperature of water and Aluminum = 30°C

L_f = Latent heat of fusion = 3.33\times 10^5\ J/kg^{\circ}C

m_w = Mass of water = 200 g

c_w = Specific heat of water = 4186 J/kg⋅°C

m_{Al} = Mass of Aluminum = 80 g

c_{Al} = Specific heat of Aluminum = 900 J/kg⋅°C

The equation of the system's heat exchange is given by

m_i(L_f+c_wT)+m_wc_w(T-T_i)+m_{Al}c_{Al}=0\\\Rightarrow 0.05\times (3.33\times 10^5+4186\times T)+0.2\times 4186(T-30)+0.08\times 900(T-30)=0\\\Rightarrow 1118.5T-10626=0\\\Rightarrow T=\dfrac{10626}{1118.5}\\\Rightarrow T=9.50022\ ^{\circ}C

The final equilibrium temperature is 9.50022°C

4 0
3 years ago
The equation that relates two poles to the force between them and their separation is the ____ square law.
Ivenika [448]
A-exponential
You welcome
4 0
3 years ago
"The drawing shows three layers of different materials, with air above and below the layers. The interfaces between the layers a
My name is Ann [436]

Answer:

Angle of incidence that entered material b= 63.1°

Angle of incidence between a and b = 55.9°

Explanation: Using the formular:

n1sintheta1= n2sintheta2

The light ray which enters material B will be

1.4Sin72.8° = 1.5Sin theta

1.3373= 1.5Sintheta

sintheta = 1.3373/1.5

Sin^-1 0.8916 = Theta

63.1 = theta

When the ray hits interface with material a

1.5Sin63.1 = 1.3 Sin theta

1.3374 = 1.3Sin theta

Sintheta= 1.3374/1.3

Sin theta = 1.0877

There will be total reflection off the boundary b c because sin theta exceeded 1 in value.

The equation should be

1.4sin63.1 = 1.4 sin theta

Sin theta=72.8°

When the ray hits air-c boundary:

1.4sin72.8=1.00sin theta

Sin theta=1.3374/1 =1.3374

There is total reflection.

In material a,the ray will:

1.3sin72.8° = 1.00sin theta

There will be total reflection when the ray hits a-b boundary.

1.3sin72.8= 1.5sintheta

Sin theta= 1.2419/ 1.5

Sin theta =0.8279

Theta= Sin^-10.8279= 55.88°

When ray hits c-air boundary

1.4sin63.1= 1.00sintheta

1.2485= sin theta = Toal reflection.

Therefore when the ray of light pass through the layers of material a, b and c the boundary with air on top and bottom will be total reflection.

7 0
3 years ago
The sunspot cycle is a pattern of solar activity where the average number of sunspots gradually _______________________________
zzz [600]

Answer:

option D

Explanation:

Sunspots are the spot that appears on the sun, this spot appears darker than the surrounding surface of the sun.

Sun magnetic field goes through a cycle and this cycle is called the Sunspot cycle. Every 11 years the magnetic field of the sun completely flips. This sunspot cycle affects activity on the surface of the sun.

Sunspot cycle is the pattern of solar activity where an average number of sunspot gradually increase and decrease.

Hence, the correct answer is option D

8 0
3 years ago
A sample of an unknown substance has a mass of 0. 158 kg. If 2,510. 0 J of heat is required to heat the substance from 32. 0°C
guapka [62]

The specific heat of the unknown substance with a mass of 0.158kg is 0.5478 J/g°C

HOW TO CALCULATE SPECIFIC HEAT CAPACITY:

The specific heat capacity of a substance can be calculated using the following formula:

Q = m × c × ∆T

Where;

  • Q = quantity of heat absorbed (J)
  • c = specific heat capacity (4.18 J/g°C)
  • m = mass of substance
  • ∆T = change in temperature (°C)

According to this question, 2,510.0 J of heat is required to heat the 0.158kg substance from 32.0°C to 61.0°C. The specific heat capacity can be calculated:

2510 = 158 × c × (61°C - 32°C)

2510 = 4582c

c = 2510 ÷ 4582

c = 0.5478 J/g°C

Therefore, the specific heat capacity of the unknown substance that has a mass of 0.158 kg is 0.5478 J/g°C.

Learn more about specific heat capacity at: brainly.com/question/2530523

4 0
3 years ago
Other questions:
  • "An empty cylindrical barrel is open at one end and rolls without slipping straight down a hill. The barrel has a mass of 19.0 k
    15·1 answer
  • A grapefruit has a weight on earth of 4.9 newtons. what is the grapefruit's mass?
    8·1 answer
  • Can you see an apple in the dark?
    10·1 answer
  • Which of these has the most inertia?
    8·1 answer
  • How to find the maximum amount of a substance that will dissolve using a graph?
    9·1 answer
  • Wind can cause ocean currents to flow in a particular pattern
    13·1 answer
  • Which color of light refracts at the greatest angle when white light is incident on a prism?
    11·2 answers
  • Pls help meh Kdjdjeidjndiejdididjdjjdidjdjdiejd
    15·2 answers
  • Anyone know the answer
    15·1 answer
  • A tennis ball is dropped from a height of 3 m and bounces back to a height of
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!