In the first case, the force acting on the spring is the weight of the mass:

This force causes a stretching of

on the spring, so we can use these data to find the spring constant:

In the second case, the first mass is replaced with a second mass, whose weight is

And since we know the spring constant, we can calculate the new elongation of the spring:
If you take a fluid (i.e. air or water) and heat it, the portion that is heated usually expands. The same mass takes up more volume and as a consequence the heated portion becomes less dense than the portion that is<span><span> not heated.</span> </span>
Answer:
16613 m/s
Explanation:
Given that
mass of the fly, m = 0.55 g = 0.55*10^-3 kg
Kinetic Energy of the fly, E = 7.6*10^4 J
Speed of the fly, v = ? m/s
We know that the Kinetic Energy is that energy that an object, in this case, the fly, possesses due to its motion.
The Kinetic Energy, KE of any object is represented by the formula
KE = 1/2 * m * v²
If we substitute the values in the relation, we have,
7.6*10^4 = 1/2 * 0.55*10^-3 * v²
v² = (15.2*10^4) / 0.55*10^-3
v² = 2.76*10^8
v = √2.76*10^8
v = 16613 m/s
Thus, the fly would need a speed of 16.6 km/s in order to have a Kinetic Energy of 7.6*10^4 J
Answer:

Explanation:
According to Pascal's Law, the pressure transmitted from input pedal to the output plunger must be same:

where,
F₁ = Load lifted by output plunger = 2100 N
F₂ = Force applied on input piston = 44 N
r₁ = radius of output plunger
r₂ = radius of input piston
Therefore,

Sunspots<span> are temporary phenomena on the </span>Sun<span>'s photosphere that appear as </span>spots<span> darker than the surrounding areas. They are regions of reduced surface temperature caused by concentrations of magnetic field flux that inhibit convection. </span>Sunspots<span> usually appear in pairs of opposite magnetic polarity.
</span>