Answer:
Energy is force times distance. For your problem, no matter how long you push, the wall still goes nowhere, so there is no obvious energy transfer. so in conclusion, you actually didn't do anything :(
Explanation:
Because of the earths curve and temperature. The temperature in an area depends on the amount of the Sun's energy reaching the surface in that area. The equator tilts closer to the sun than the poles do. I hope this helps!
Answer:
v = 3×10^8 m/s
s= 384,400 km= 3.84×10^8 m/s
t = ?
v = s/t = 2s/t
t = 2s/v
t = (2×3.84×10^8) ÷ 3×10^8
t = 2.56 seconds
Explanation:
Earth's moon is the brightest object in our
night sky and the closest celestial body. Its
presence and proximity play a huge role in
making life possible here on Earth. The moon's gravitational pull stabilizes Earth's wobble on its axis, leading to a stable climate.
The moon's orbit around Earth is elliptical. At perigee — its closest approach — the moon comes as close as 225,623 miles (363,104 kilometers). At apogee — the farthest away it gets — the moon is 252,088 miles (405,696
km) from Earth. On average, the distance fromEarth to the moon is about 238,855 miles (384,400 km). According to NASA , "That means 30 Earth-sized planets could fit in between Earth and the moon."
“Weathering is the breaking down of rocks, soil and minerals as well as wood and artificial materials through contact with the Earth’s atmosphere, biota and waters. Weathering occurs in situ, roughly translated to: “with no movement”, and thus should not be confused with erosion, which involves the movement of rocks and minerals by agents such as water, ice, snow, wind, waves and gravity and then being transported and deposited in other locations.”
Weathering processes are of three main types: mechanical, organic and chemical weathering.
Answer:
it seems that the answer should be 7.5 mph as the average
Explanation:
sorry i did (s x t) when it was (s/t)