Mercury Is more suitable than water cause it is denser than water.
Relation between density and pressure
Pressure = force/area
Replace force by mass * acceleration
Pressure = mass * acceleration/ area
We can replace mass by density * volume since density = mass/ volume
Pressure = density * volume * acceleration/ area
Volume is length^3 whereas area is length ^2. So volume / area = length
Pressure = density * length * acceleration
Gravity is form of acceleration so
Pressure = density * length * gravity
Length can be height or depth
Finally pressure = density * height * gravity
P = ρ g h => pressure of liquid
Answer:
Magnitude = 14 metres
Direction = eastward.
Explanation:
A cross-country skier moves 36 meters eastward, then 44meters westward, and finally 22 meters eastward.
Whats the Magnitude and Direction?
The magnitude and direction will be the displacement of the cross country skier.
Let the east ward be positive and the west ward be negative.
Since the skier moves 36 meters eastward, then 44meters westward, and finally 22 meters eastward. Then, that will be:
36 - 44 + 22 = 14
Since the answer is positive, the magnitude is 14 and the direction is east ward.
The first rule of vectors is that the horizontal and vertical components are separate. Disregarding air resistance, the only thing we have to worry about is gravity.
The appropriate suvat to use for the vertical component is v = u +at
I will take a to be -9.81, you may have to change it to be 10 if your qualification likes g to be 10.
v = 30 + (-9.81x2)
v = 30 - 19.62
=10.38m/s
Therefore we know that after 2.0 s the vertical component will be 10.38ms^-1, ie 10m/s as the answers given are all to 2sf.
The horizontal component is completely separate to the vertical component and since there is no air resistance, it will remain constant throughout the projectiles trajectory. Therefore it will remain at 40ms^-1.
Combining this together we get:
(1) vx=40m/s and vy=10m/s
Answer:
= 1.7 cm
Explanation:
The magnification of the compound microscope is given by the product of the magnification of each lens
M = M₀
M = - L/f₀ 25/
Where f₀ and
are the focal lengths of the lens and eyepiece, respectively, all values in centimeters
In this exercise they give us the magnification (M = 400X), the focal length of the lens (f₀ = 0.6 cm), the distance of the tube (L = 16 cm), let's look for the focal length of the eyepiece (
)
= - L / f₀ 25 / M
Let's calculate
= - 16 / 0.6 25 / (-400)
= 1.67 cm
The minus sign in the magnification is because the image is inverted.
= 1.7 cm
Astronomers find white dwarfs that distinguish them from main sequence stars because white dwarfs get really hot, we can search for their ultraviolet radiation.
<h3>What is a white dwarf?</h3>
A white dwarf is a very hot star that radiated much energy in the form of ultraviolet radiation.
This UV radiation is initially very bright and then these stars become red with time.
In conclusion, Astronomers find white dwarfs they can search for their ultraviolet radiation.
Learn more about white dwarfs here:
brainly.com/question/19602278
#SPJ1